Effect of *Melaleuca leucadendron*, *Cananga odorata* and *Pogostemon cablin* Oil Odors on Human Physiological Responses

Rini Pujiarti, Yoshito Ohtani, Titis Budi Widowati, Wahyudi, Kasmudjo, N. Kaushalya Herath, and Chao Nan Wang

Abstract

The aims of this study were to evaluate the main compounds and the effect of *M. leucadendron, C. odorata* and *P. cablin* essential oil odors on human physiological responses. The chemical compounds of essential oils in this study were analyzed by gas chromatography-mass spectrometry (GC-MS) and the physiological effects of essential oils on human were analyzed via the sense of smell olfactory system. Physiological parameters of systolic blood pressure, diastolic blood pressure, pulse rate, stress index, and brain wave were recorded before and after sniffing essential oils. The result shows that the main compound of *M. leucadendron, C. odorata*, and *P. cablin* is 1,8-cineole, Caryophyllene and Patchouli Alcohol, respectively. Our results demonstrated that *M. leucadendron* and *C. odorata* oil odors possessed sedative effect and *P. cablin* oil odor had tendency to contain stimulating effect on human physiologies.

Keywords: *M. leucadendron, C. odorata, P. cablin*, chemical composition, physiological effect.

Introduction

Essential oils from natural sources are endowed with many physiological and pharmacological properties. They have many positive properties and effect such as being anti-inflammatory, antiseptic, appetite-stimulating, carminative, choleretic, expectorant, circulation-stimulating, deodorizing, insecticidal, granulation-stimulating, hyperaemic, insect-repelling, and sedative (Steflitsch *et al.* 2008).

Essential oils can be absorbed into the body via the skin or the olfactory system. When essential oils are inhaled, they stimulate parts of the brain and influence physical, emotional, and mental health because of their structural complexity (Rho *et al.* 2006). Some of the odors of essential oils are used in the treatment of depression, anxiety and some types of cognitive disorders in aromatherapy (Kuroda *et al.* 2005).

The effect of odors on human are divided into physiological and psychological effects. Physiological measurement would be beneficial in order to elucidate actual physiological change in human. Physiological parameters which can be used as indicator for measure of the odor effects such as heart rate, blood pressure, electrodermal activity, electroencephalogram, slow potential brain wave, and eye blink rate or pupil functions (Hongratanaworakit 2004). A study found that olfactory stimulation produces immediate changes in physiological parameters such as blood pressure, muscle tension, pupil dilation, blink magnitude, skin temperature, skin blood flow, electrodermal activity, pulse rate, and brain activity (Rho *et al.* 2006).

The essential oils also have stimulating and sedative/relaxing properties and physiological test can be used to classify odors as stimulant or sedative. However, there is less scientific information about physiological effects

of essential oil from Indonesia. In this study, we observed the inhalation of three essential oils from Indonesian essential oil plants, namely M. leucadendron, C. odorata and P. cablin. M leucadendron oil has been used as a perfume and a popular remedy (Jamu medicine) for the treatment of colic, cholera, headaches, toothache and various skin diseases in Indonesia (Perry 1980). They are used mainly in the manufacture of cosmetics, germicides and as antiseptic agents. They are also used as carminatives and in the treatment of several ailments (Yoshida et al. 1996). C odorata is an evergreen tree indigenous to China, Burma, Thailand, Indonesia and the Philippines. Its oil is used in perfumery, aromatherapy, pharmaceutical, cosmetics and food industry (Kristiawan et al. 2008). Burdock and Carabin (2008) describes the use of Cananga flowers to add scent to coconut oil; the essential oil is used as a flavoring in candies, icings, baked goods. soft drinks, and chewing gum in Southeast Asia. This oil is also used topically as a sedative, antiseptic, hypotensive, and aphrodisiac. Pogostemon cablin from Southeast Asia is cultivated extensively in Indonesia, Philippines, and Malaysia. This essential oil is also called patchouli oil (Singh et al. 2002). Patchouli oil is one of the important natural essential oils used to give a base and lasting character to a fragrance in perfumery industry. This oil is very appreciated for its characteristic pleasant and long lasting woody, earthy, and camphor odor, as well as for its fixative properties, being suitable for use in soaps and cosmetic products. The patchouli essential oil also shows medicinal properties including anti-inflammatory, aphrodisiac, antidepressive, astringent, carminative, febrifuge, diuretic, tonic, antiemetic, trypanocidal, antibacterial, and antifungal activity (Zhao et al. 2005).

The aims of this study were to examine major compounds and effects of M. leucadendron, C. odorata and

P. cablin essential oils from Indonesia on human physiological responses by observing the changes of systolic and diastolic blood pressures, pulse rate, stress index, and brain wave after sniffing the essential oil samples.

Materials and Methods

Essential Oil Samples

Samples were obtained from Indonesian essential oil plants of *M. leucadendron, C. odorata,* and *P. cablin.* Essential oils of each sample was obtained by hydrodistillation method extraction from fresh leaves of *M. leucadendron,* fresh flowers of *C. odorata* and dry leaves of *P. cablin.* Extract processes were conducted in Non Wood Forest Product Laboratory, Forest Product Technology Department, Faculty of Forestry, Gadjah Mada University, Indonesia. The oils produced were kept in labeled bottles at approximately 0°C until used.

GC-MS Analysis

The chemical analysis of the essential oils were conducted by a GC-17A gas chromatograph (GC) coupled to a QP5050A mass spectrometer (Shimadzu Co. Ltd, Kyoto, Japan) using a fused-silica capillary column TC-1701 (0.25 mm i.d. x 15 m, 0.25 μ m film thickness; GL Sciences). GC-MS was performed using the following conditions: carrier gas He; flow rate 20.6 ml/min; splitless injection; injection volume 1.0 μ l; injection temperature 230°C; oven temperature programmed from 30°C (5 min hold) to 100°C at 10°C/min (5 min hold), and from 100°C to 230°C at 15°C/min (5 min hold); interface temperature 230°C; and electron-impact ionization at 70 eV.

Identification of chemical compounds was carried out by comparing the retention time with National Institute of Standards and Technology (NIST) database library and literatures.

Physiological Analysis

The participants in this study were 10 volunteers with normal olfaction. Data were collected from five males and five females volunteers, with aged 22 to 35 years (mean: 26 six years). The physiological parameters of systolic (maximum), diastolic (minimum) blood pressures, pulse rate, stress index, and intensities of brain wave were evaluated in this study. The parameters were measured before and after sniffing (3 min) M. leucadendron, C. odorata and P. cablin oils in paper strip. Two control tests were conducted by using normal condition without sniffing essential oils (C_a) and by only sniffing the distilled water in paper strip test (C_b). Each parameter was determined by averaging the three replicates data.

The systolic (maximum), diastolic (minimum) blood pressures and pulse rate were measured by digital sphygmometer. In this study, human blood pressure rate

value were divided into: low (min./max.: $40 \sim 60$ / $70 \sim 90$ mmHg), ideal (min./max.: $60 \sim 80$ / $90 \sim 120$ mmHg), prehigh blood (min./max.: $80 \sim 90$ / $120 \sim 140$ mmHg), and high (min./max.: $90 \sim 100$ / $140 \sim 190$ mmHg).

The stress index was measured by Cocorometer (CM-1.1, NIPRO Co.) based on the amylase activity of saliva (Yamaguchi and Yoshida 2005). Higher stress index values mean to be highly stressed. Stress levels were evaluated in this study. Stress level determined by Cocorometer was classified into: no stress (0 \sim 30 KU/L), low stress (30 \sim 45 KU/L), medium stress (46 \sim 60 KU/L), and high stress (> 61 KU/L).

Essential oil odors produce cortical brain wave activity responses involving alpha, beta, delta and theta waves. The highest ratio of the alpha wave indicates decrease of stress. The intensities of wave brain (α (slow: 7 ~ 8Hz (α_s), mid: 9 ~ 11Hz (α_m), fast: 12 ~ 14Hz (α_f)), β (15 ~ 23Hz), θ (4 ~ 6Hz) — waves) were measured by Mind Sensor II (Naryoku Kaihatsu Kenkyusho Co.). The mental condition was evaluated as the relaxation value = ($3\alpha_m + \alpha_s + \theta$) x 100%.

Statistical Analysis

The results were analyzed using *t*-test to evaluate the differences in effectiveness of essential oils on human physiological responses. Results with P < 0.05 were considered to be statistically significant.

Results and Discussion

Major Compounds of Essential Oils

The major compounds of GC-MS analysis and percentages of three essential oils are shown in Table 1. Major compounds are presented in Table 1 based on the percent content which has percentage more than 5%.

Four major compounds identified in *M. leucadendron* oil are 1,8-cineole (55.04%), α -terpineol (8.79%), d-limonene (6.39%) and β -caryophyllene (5.03%), five major compounds in *C. odorata* are Caryophyllene (36.44%), Germacrene D (17.23%), α -caryophyllene (9.61%), Benzyl benzoate (7.18%), and Linalool (5.97%), and five major compounds in *P. cablin* oil are Patchouli Alcohol (34.40%), Azulene (15.01%), β -humulen (13.15%), α -panasinsen (9.63%) and 7-menthanoazulene (6.91%).

The GC-MS analysis showed that the main compound in *M. leucadendron* oil was monoterpene compound of 1,8-cineole (55.04%), in *C. odorata* oil was sesquiterpene compound of Caryophyllene (36.44%), and in *P. cablin* was sesquiterpene compound of Patchouli Alcohol (34.40%). Several studies previously also reported that 1,8-cineole is the main compound in *M. leucadendron* oils (Sakasegawa *et al.* 2003; Farag *et al.* 2004; Pujiarti *et al.* 2011), main compound in *C. odorata* is Caryophyllene (Kristiawan *et al.* 2008) and the main compound in *P. cablin* is Patchouli Alcohol (Hu *et al.* 2006).

Table 1. Major compound of essential oils.

Plant	Major compound	Percent major compound (%)	
M. leucadendron	1,8-cineole	55.04	
	α-terpineol	8.79	
	<i>d</i> -limonene	6.39	
	β-caryophyllene	5.03	
C. odorata	Caryophyllene	36.44	
	Germacrene D	17.23	
	α-caryophyllene	9.61	
	Benzyl Benzoate	7.18	
	Linalool	5.97	
P. cablin	Patchouli Alcohol	34.40	
	Azulene	15.01	
	β-humulen	13.15	
	α-panasinsen	9.63	
	7-menthanoazulene	6.91	

Table 2. Effects of sniffing essential oil on human physiological responses.

Parameter	Before sniffing essential oil (Control)		After sniffing essential oil		
	Ca*	C _b **	M. leucadendron	C. odorata	P. cablin
Systolic blood pressure (mmHg)	106.43 ± 11.51 a	103.87 ± 14.60 a	100.20 ± 10.26 a	105.20 ± 10.72 a	107.37 ± 13.84 a
Diastolic blood pressure (mmHg)	70.60 ± 10.53 a	67.83 ± 11.61 a	66.93 ± 9.44 a	69.20 ± 11.71 a	69.37 ± 11.83 a
Pulse rate (bpm)	75.33 ± 7.55 a	75.40 ± 6.59 a	72.97 ± 5.61 a	$73.40 \pm 7.38 a$	73.23 ± 7.60 a
Stress index (KU/L)*** Brain wave	73.33 ± 35.53 a 222.90 ± 16.89 a	54.40 ± 22.43ab 224.83 ± 11.27 a	43.13 ± 15.81 b 231.17 ± 16.13 a	49.50 ± 18.34ab 225.67 ± 19.48 a	57.53 ± 27.38ab 222.70 ± 17.85 a

^{*:} normal condition, not sniffing anything, **: sniffing distilled water, ***: KU/L of alpha-amylase

Means followed by the same alphabetical letters are not significantly different by *t*- test at 5% probability level among the samples.

Physiological Analysis

Table 2 shows human physiological responses before $(C_a\text{-}C_b)$ and after sniffing M. leucadendron, C. odorata and P. cablin oils. Some parameters were not significant different but the result showed tendency that essential oils of M. leucadendron. C, odorata, and P. cablin can influence human physiologies.

Systolic and Diastolic Blood Pressure

The Systolic and diastolic blood pressures in this study tended to decrease after sniffing M. leucadendron oil. Systolic and diastolic blood pressures after sniffing C. odorata oil were lower than Ca but higher than Cb and systolic blood pressure after sniffing P. cablin oil increased and diastolic blood pressure was lower than C_a but higher than C_b (Figure 1 and 2). In this study, systolic and diastolic blood pressures after sniffing M. leucadendron and C. odorata oils were reduced. Several studies explained that blood pressure is considered to be associated with cardiovascular health (Zi-lin et al. 2009) and inhalation of essential oil could lead to a decrease in blood pressure (Hongratanaworakit et al. 2002; 2004). On the other hand P. cablin oil odor caused an increase of systolic and diastolic blood pressure. This finding likely indicates that M. leucadendron and C. odorata oils odors possesses a sedative effect (decrease of blood pressure), in contrast P. cablin oil odor possess a stimulant effect (increase of blood pressure). This result shows that *M. leucadendron* and *C. odorata* oils can reduce blood pressure and keep blood pressure in ideal condition.

Pulse Rate

Pulse rate volunteers in this study tended to decrease after sniffing each oil sample (Figure 3). The results showed that M. leucadendron oil was the best in reducing the pulse rate, followed by P. cablin and C. odorata oils, respectively. Romine et al. (1999) explained that pulse rate can change under olfactory stimulation. Specifically, it was found that sedative odors decrease pulse rate (Jellinek 1994). A review article explained that the common physiological measurement of heart activity is pulse rate, change of pulse rate as indices for sedative effect and faster heartbeat is often caused by stress (Hongratanaworakit 2004). Several studies previously also used changes of pulse rate and blood pressure as indicates for the measurement of sedative effect of odors (Yamaguchi 1990; Brauchli et al. 1995; Ohtani et al. 2009). Each essential oil in this study can keep pulse rate (beats/min) in normal blood pressure or in relaxed condition.

Stress Index

This study found that each essential oil seems to have influence on reducing stress index (Figure 4). Among the oil samples, *M. leucadendron* oil was the most effective in reducing stress. Stress index before (Ca: 73.33 KU/L) and after sniffing *M. leucadendron* oil (43.13 KU/L) was significantly different. *M. leucadendron* can reduce stress level from high level to low level. This essential oil showed sedative effect which it can make human feel more relax after sniffing this essential oil. Stress index of *C. odorata* (49.50 KU/L) and *P. cablin* (57.53 KU/L) oils also showed the effect in reducing stress level from high level to medium level.

Brain Wave

Alpha brain wave is increased when the person is relaxed, the highest ratio of the alpha wave indicates decreased of stress. In this study, *M. leucadendron* and *C. odorata* oils can increase alpha brain wave or increase relaxation value. In contras, relaxation value decreased after sniffing essential oil of *P. cablin* (Figure 5). The result showed that *M. leucadendron* oil is most effective in reducing stress followed by *C. odorata*. However *P. cablin* has tendency to increasing alpha brain wave or have stimulating effect to improving the activity of brain.

In general, *M. leucadendron* and *C. odorata* oils can be used alone as aromatherapy because its have sedative

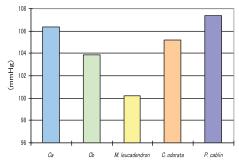


Figure 1. Effect of essential oils on systolic (max.) blood pressure (C_a :normal condition, not sniffing anything, C_b : sniffing distilled water).

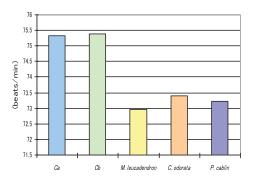


Figure 3. Effect of essential oils on pulse rate (C_a : normal condition, not sniffing anything, C_b : sniffing distilled water).

effect. This effect is probably due to the major compound and sedative odors of these essential oils. It is convinced by a study which reported that 1,8-cineole compound has sedative effect (Ilberger et al. 2001). C. odorata oil consists of several sesquiterpene and a monoterpene group, which make this essential oil has not strong odor. Previous study reported that C. odorata oil consists of sesquiterpene hydrocarbons, alcohols, esters, ethers, phenols, and aldehydes which make this oil has medium aroma (Burdock and Carabin 2008). On the other hands, P. cablin oil has tendency to content stimulating effect. It is possible because this oil has strong smell, and usually strong smell possesses stimulating effect. This is probably because main compound of this oil is Patchouli Alcohol which is included in the sesquiterpene group. A previous study reported that P. cablin has a very strong odor because the composition of P. cablin is unique and complex. It consists of more sesquiterpenes compounds rather than a blend of different mono-, sesqui- and di-terpene compounds. sesquiterpenes are responsible for the typical P. cablin odor (Deguerry et al. 2006). This study also shows that control test with sniffing the distilled water (Cb) may indicate an influence of placebo effect. By only sniffing the distilled water, blood pressures, pulse rate, stress index and brain wave has changed, compared to the control in normal condition (Ca).

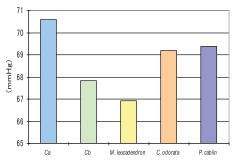


Figure 2. Effect of essential oils on diastolic (min.) blood pressure (C_a : normal condition, not sniffing anything, C_b : sniffing distilled water).

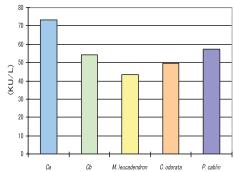


Figure 4. Effect of essential oils on stress index (C_a : normal condition, not sniffing anything, C_b : sniffing distilled water).

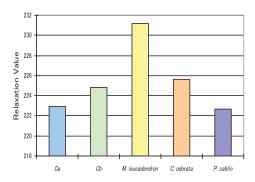


Figure 5. Effect of essential oils on brain wave (C_a : normal condition, not sniffing anything, C_b : sniffing distilled water).

Conclusions

The *M. leucadendron* and *C. odorata* oils possessed sedative effect and *P. cablin* oil odor had tendency to contain stimulating effect on human physiological responses. This result was influenced by the odors of its main compounds.

There is an interaction of odor and mood. Essential oils have certain therapeutic effects on the user or human organism when its fragrance is inhaled.

This study can be considered as a preliminary study for physiological effects of essential oils on human. Further experiments are needed to obtain deep information.

Acknowledgement

This study was supported by RENDAI, United Graduate School of Agriculture Science, Ehime University, Japan. The authors also thank Kochi University for some analysis and Faculty of Forestry, Gadjah Mada University, Yogyakarta, Indonesia for providing essential oil samples.

References

- Brauchli, P.; P.B. Ruegg; F. Etzweiler; H. Zeier. 1995. Electrocortical and Autonomic Alteration by Administration of A Pleasant and An Unpleasant Odor. Chem. Senses 20: 505-515.
- Burdock, G.A.; I.G. Carabin. 2008. Safety Assessment of Ylang–Ylang (*Cananga spp.*) as A Food Ingredient. Food and Chemical Toxicology 46: 433-445.
- Deguerry, F.; L. Pastore; S. Wu; A. Clark; J. Chappel; M. Schalk. 2006. The Diverse Sesquiterpene Profile of Patchouli, *Pogostemon cablin*, is Correlated with Limited Number of Sesquiterpene Synthases. Archives of Biochem and Biophysics 454: 123-126.
- Farag, R.S.; A.S. Shalaby; G.A. El-Baroty; N.A. Ibrahim; M.A. Ali; E.M. Hassan. 2004. Chemical and Biological Evaluation of The Essential Oils of Different *Melaleuca* species. Phytother. Res. 18: 30-35.
- Hongratanaworakit, T. 2004. Physiological Effects in

- Aromatherapy. Songklanakarin J. Sci Technol. 26 (1): 117-125.
- Hongratanaworakit, T.; E. Heuberger; G. Buchbauer G; 2002. Influence of Ylang-ylang Oil on Mental, Emotional and Human Physiological Parameters. Proc. 33rd International symposium on essential oils (ISEO 2002), Lisbon, Portugal: 37.
- Hu, L.F.; S.P. Li; H. Caob; J.J. Liu; J.L. Gaoa; F.Q. Yang; Y.T. Wang. 2006. GC–MS Fingerprint of *Pogostemon cablin* in China. J.Pharm and Biomed Analysis 42: 200-206.
- Ilberger, J.; E. Henberger; C. Mahrhofer; H. Dessovie; D. Kowarik; G. Buchbauer. 2001. The Influence of Essential Oils on Human Attention. I: Alertness. Chem. Senses 26: 239-245.
- Jellinek, S.J. 1994. Aroma-chology: A Status Review. Cosmetics and Toiletries 109 (10): 1-28.
- Kristiawan; V. Sobolik; M. Al-Haddad; K. Allaf. 2008. Effect of Pressure-drop Rate on The Isolation of Cananga Oil Using Instantaneous Controlled Pressure-drop Process. Chem. Engineering and Processing 47: 66-75.
- Kuroda, K.; N. Inoue; Y. Ito; K. Kubota; A. Sugimoto; T Kakuda; T. Fushiki. 2005. Sedative Effects of The Jasmine Tea Odor and (R)-(-)-Linalool, One of Its Major Odor Components, on Autonomic Nerve Activity and Mood States. Eur. J. Appl Physiol. 95: 107-114.
- Ohtani; Y.; P. Siramon; R. Pujiarti; H. Ichiura. 2009. New Utilization Methods of Esssential Oils from Woody Biomass. Transactions of the Materials Research Soc. of Japan 34(4): 715-718.
- Perry, L.M. 1980. Medicinal Plants of East and Southeast Asia, the MIT Press, Cambrige, Massachusetts.
- Pujiarti, R.; Y. Ohtani; H. Ichihura. 2011. Physicochemical Properties and Chemical Compositions of *Melaleuca leucadendron* Leaf Oils Taken from the Plantations in Java, Indonesia. J. Wood Sci. 57: 446-451.
- Rho, K.H.; S.H. Han; K.S. Kim; M.S. Lee M.S. 2006. Effects of Aromatherapy Massage on Anxiety and Self-Esteem in Korean Elderly Women: A Pilot Study. Int. J. Neurosci. 116: 1447-1455.

- Romine, I. J.; A.M. Bush; C.R. Geist. 1998. Lavender Aromatherapy in Recovery from Exercise. Perceptual and Motor Skills 88: 756-758.
- Sakasegawa, M.; H. Keko; M. Yatagai. 2003. Composition and Antitermite Activities of Essential oils from *Melaleuca* spesies. J. Wood Sci. 49: 181-187.
- Singh M.; S. Sharma; S. Ramesh. 2002. Herbage, Oil Yield and Oil Quality of Patchouli [Pogostemon cablin (Blanco) Benth.] Influenced by Irrigation, Organic Mulch and Nitrogen Application in Semi-arid Tropical Climate. Industrial Crops and Products 16: 101-107.
- Steflitsch, W.; M. Steflitsch. 2008. Clinical Aromatherapy. Published by Elsevier Ireland Ltd. 5(1): 74-85.
- Yamaguchi, H. 1990. Effects of Odor on Heart Rate. In: The Psycho-physiological Effects of Odor. Aromachology, Koryo pp: 168.
- Yamaguchi, M.; H. Yoshida. 2005. In: Chemical Sensors 21(3): 92-98.
- Yoshida, T.; T. Maruyama; A. Nitta; T. Okuda. 1996. An Hydrolysable Tannin and Accompaning Polyphenols from *Melaleuca leucadendron*. Phytochemistry 42: 1171-1173.
- Zhao, Z.; J. Lu; K. Leung; C.L. Chan; Z.H. Jiang. 2005. Determination of Patchouli Alcohol in Herba Pogostemonis by GC–MS. Chem. Pharm. Bull. 53: 856-860.
- Zi-lin, J.; L. Xia; Z. Qi-xiang, P. Hui-tang, A.N. Xue. 2009. Human Responses to Flower Fragrance of *Lilium* 'Siberia' and *Rosa* 'Escimo'. For. Stud. China 11(3): 185-189.

Rini Pujiarti, Titis Budi Widowati, and Kasmudjo Department of Forest Product Technology Faculty of Forestry, Gadjah Mada University Jl. Agro No. 01, Bulaksumur, Yogyakarta, 55281 Indonesia.

Tel. : 0274-550541 Fax. : 0274-550543 E-mail : rpujiarti@gmail.com

Yoshito Ohtani, N. Kaushalya Herath, and Chao Nan Wang
Department of Forest Science
Faculty of Agriculture
Kochi University. B-200 Monobe, Nankoku, Kochi 783-8502 Japan.

Tel. : +81-88-864-5143. Fax. : +81-88-864-5143. E-mail : ohtani@kochi-u.ac.jp

Wahyudi

Department of Wood Science and Forest Products Faculty of Forestry, The State University of Papua Manokwari 98314, West Papua, Indonesia.

Tel./Fax.: 0986-211065

E-mail: wahyoedhi@lycos.com