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strength and mode | critical stress intensity factors of the specimens with various crack
lengths were measured, and the influence of the crack length on these properties was
examined. The nominal bending strength of the cracked specimens was significantly lower
. than that of a crack-free specimen, even when the crack was extremely short. This finding
Keywords. . suggests that the fracture mechanics theory is essential for analyzing the failure behaviour
Single-edge-notched bending test N . R R R
N . ) of wood with a very short crack. However, the mode | critical stress intensity factor still
Mode [ stress intensity factor ! N N
Bending strength depended on the crack length. When considering the fracture process zone developing at
Correction crack length the crack tip, the critical intensity factor could be predicted effectively.
© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Over the years, various studies of the fracture properties of wood have been conducted on the basis of the fracture
mechanics theory. Many of these studies are discussed in recent reviews [1,2]. Most of them have used specimens with rel-
atively long cracks. In contrast, it is difficult to find any study that examines the fracture properties of specimens with short
cracks, perhaps because it is assumed that the theory of fracture mechanics does not apply to such materials. According to
research on metals by Irwin et al. [3], the nominal strength value of a cracked specimen coincides approximately with its
actual strength, which is measured using a crack-free specimen when the crack is shorter than a certain critical length. When
the crack is longer than the critical length, the nominal strength decreases as the crack length increases; hence, fracture
mechanics is useful for analyzing the strength behaviour of the materials with a long crack. This phenomenon is described
in several texts about fracture mechanics and it is reasonable to assume that it can be widely applicable to other materials,
although it is not clear whether it is applicable to wood.

In the present study, single-edge-notched bending (SENB) tests were conducted using specimens of agathis with varying
crack lengths that were smaller than those adopted in several existing studies involving the single-edge-notched tension or
bending tests [4-9]. The nominal bending strength and mode I critical stress intensity factor were analyzed on the basis of
elementary beam theory and linear fracture mechanics theory, respectively. The results revealed the appropriate method for
analyzing the failure and fracture behaviours of wood with short cracks.

2. Three-point single-edge-notched bending test analyses

Fig. 1 shows a schematic diagram of the three-point single-edge-notched bending (SENB) test. The specimen, which had a
crack of length a at its centre, was supported with a span of §, and the load was applied at the mid-span. The crack length is
defined as a. In this loading condition, the nominal bending stress «, is derived from the elementary beam theory as follows:
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Nomenclature

a crack length

a’ corrected crack length

B am width

E. &ung's modulus in the vertical direction

E, oung's modulus in the horizontal direction

flafW)  crack geometry factor

F, nodal force at the crack tip in the x-direction

F, nodal force at the crack tip in the y-direction

Gy mode | energy release rate

Gy shear modulus in the vertical-horizontal plane

K, mode | stress intensity factor

K. critical value of the mode | stress intensity factor

P applied load

P, critical load for crack propagation

w beam depth

X vertical direction of the specimen

¥ horizontal direction of the specimen

5}; relative crack face displacement between the nodes adjacent to the crack tip in the x-direction
&, relative crack face displacement between the nodes adjacent to the crack tip in the y-direction
A additional crack length

Aa length in the x- and y-directions of the element at the delamination front
Vay Poisson's ratio in the vertical-horizontal plane

T, nominal bending stress

List of acronyms

FPZ fracture process zone

SENB single-edge-notched bending
VCCT virtual crack closure technique

(1)

where B and W are the beam width and depth, respectively, and Pis the applied load. This notation is applicable to crack-free
specimens. When a crack-free specimen is bent, the failure-by-bending moment is induced when o, reaches its critical value
T ne Which is usually defined as the bending strength of the material.

As described above, ¢, is considered to be constant for short cracks [3]. For long cracks, however, o, decreases with
increasing crack length. Therefore, the fracture behaviour of a material with a long crack should be analyzed using the mode
| stress intensity factor K, or the energy release rate G;, each of which is derived from fracture mechanics theory. The value of
Gi can be determined using energy considerations and is mathematically well defined, while K, is regarded as a localized
parameter that is influenced by microstructural local anisotropy [10]. In terms of rigor, the measurement of G, which re-
quires the load-deformation relation corresponding to the crack length, is preferable to that of K. A compliance calibration
method in which the loading-line compliance/crack length relation is required, is usually adopted for measuring G; by an
SENB test. In SENB testing of specimens with a short crack, however, it is difficult to obtain this relation appropriately,

i

y(T)
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‘_ S=4wW ‘J
| >

Fig. 1. Schematic diagram of the three-point single-edge-notched bending (SENB) test.
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because the loading-line compliance does not vary with the crack length. In contrast, K, for which the load-deflection rela-
tion is not required, is more easily measured using an approximating equation than G, is, despite being less mathematically
rigorous.

The mode | stress intensity factor K; is derived using the following equation:

K = o, \/ﬁf(%:]_ (2)

where fla/W) is the crack geometry factor, which is usually determined by finite element method (FEM) calculations. The
fracture is initiated when K; reaches the critical stress intensity factor, defined as K., which is obtained by substituting
o, for o, in Eq. (2).

3. Finite element calculations

To determine the crack geometry factor fla/W), two-dimensional FEM calculations were performed using ANSYS version
11.0 from the Information Processing Center of Shimane University. Fig. 2 shows the finite element mesh of the SENB spec-
imen. The depth of the models, W, had values of 15, 30 and 60 mm corresponding to the models with spans S of 60, 120 and
240 mm, respectively. Table 1 shows the crack length a used in the analyses, which are similar to those used in th!ctual
SENB tests described in Section 4.3. The mesh was refined to be finer closer to the crack tip, as shown in Fig. 2b and c. Table 2
shows the elastic properties used in the calculations. These properties were determined by the vibration and compression
tests described in Section 4.2. The vertical and horizontal directions of the model were defined as the x- and y-directions,
respectively, and they corresponded to the radial and tangential directions of the wood. The crack was produced along
the radial direction in the radial-tangential plane, which is the so-called TR system.

The models were supported in the vertical direction at y = 3, 6, and 12 mm and at y = 63, 126, and 252 mm for the models
with depths of 15, 30, and 60 mm, respectively, and a vertical displacement u, of 1 mm was applied at the node located at the
top of the mid-span.

Mode [ and mode [l strain energy release rate components were calculated using the two-dimensional virtual crack clo-
sure technique (VCCT) [11] as follows:

Fd

61 = i @)
B,

G = 3hag

where Fi, and Fj, are the nodal forces at the crack tip node j in the x- and y-direction, respectively. Also, &, and &, are the rel-
ative displacements between nodes i and ', which are located at a distance Aa (=0.0125 mm) behind the crack tip in the x-
and y-directions. In the calculations, the mode II strain energy release rate component was zero, therefore the fracture
mechanics behaviours could be regarded as the pure mode [ condition.

The value of G, obtained by the VCCT was transformed into the mode | energy release rate K, by the following equations
[12]:

G \
K = \'." s (4)
|0
where E, is Young's modulus in the x-direction, and
1 [E | [E, 1/E \
- E &) 8

where E, is Young's modulus in the y-direction and G,, and v,, are the shear modulus and Poisson's ratio in the xy-plane,
respectively. The crack geometry factor f{a/W) is derived from Eqgs. (1), (2), and (4) as follows:

£(@) - 2W° G

)= ) 6)
w/ ~3spymal ¢ (6)

By substituting the total load applied to the finite element model P and G; as calculated by the VCCT into this equation, the
value of fla/W) corresponding to the equivalent crack length a/W was obtained.

4. Experiment
4.1. Materials

Agathis (Agathis sp.) lumber, with a density of 480 + 10 kg/m® at 12% moisture content (MC), was used for the tests. When
examining the fracture mechanics properties of the tangential-radial system, the influence of the annual rings is often
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Fig. 2. Finite element model used for SENB test analysis: {a) overall mesh, (b) detail of zone A in {a) and (c¢) detail of zone B in {b). The crack length a is
shown in Table 1.

significant [7]. Agathis is a tropical wood species without annual rings and so the influence of annual rings could be ignored
in the analysis. The lumber had no defects such as knots or grain distortions, so that the specimens cut from it could be re-
garded as small and clear. The lumber was stored for several months in a room at a constant temperature of 20 °C and a rel-
ative humidity of 65% before the test and was confirmed to be in an air-dried condition. These conditions were maintained
throughout the tests. The equilibrium MC was approximately 12%.
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Table 1
Specimen configurations used for the SENE tests and finite element analyses.

Specimen type Span § (mm) Depth W (mm) Width B (mm) Crack length a (mm)

A 60 15 7.5 0,051,245
B 120 30 15 0,051,2, 4,6,912
C 240 GO 30 0,051,248
Table 2
Elastic constants used for the finite element calculation.
E, (GPa) E, (GPa) Gy (GPa) Viy
0.87 068 0.14 0.45

x- and y-directions correspond to the radial and tangential directions of wood, respectively.

4.2. Compression and vibration tests for measuring the elastic constants

For the FEM analyses,’oung's moduli in the radial and tangential directions, E, and E,, respectively, and the shear mod-
ulus (G,,) and Poisson’s ratio (v,,) in the radial-tangential plane are required. These constants were measured by compres-
sion and vibration tests.

E. E, and v, were measured by compression tests. A short-column specimen whose dimensions were
30mm = 15 mr 15 mm was prepared from the lumber described above. When E, and v,, were measured, the long axis
of the specimen coincided with the radial direction of the wood and coincided with the tangential direction when E,f#as
measured. Biaxial-strain gauges were bonded at the centres of the longitudinal-tangential planes, and a compression load
was applied along the long axis of the specimen at a crosshead speed of 0.5 mm/min. From the stress-strain relationship
in the loading direction, Young's moduli E, and E, were obtained. From the relationship between the loading and transverse
strains, Poisson’s ratio v,, was obtained.

The shear modulus in the radial-tangential plane G,, was determined by free-free flexural vibration tests. A beam spec-
imen viliose dimensions were 15, 30 and 140 mm in the longitudinal, tangential and radial directions, respectively, was pre-
pared. The specimen was suspended by threads at the nodal positions of the free-free resonance v"ation mode and it was
excited in the width direction using a hammer. The first to fourth resonance frequencies in bending were measured and ana-
lyzed by a fast Fourier transform (FFT ) analysis program. The shear modulus G, was calculated by Hearmon's iteration meth-
od, the details of which are described in [13].

4.3. Single-edge-notched bending tests

All of the specimens were cut from the lumber described above so that they were long-matched to the dimensions shown
in Table 1. For cracked specimens, the crack was produced along the radial direction in the TR system. The crack was first cut
with a band saw (thickness = 1 mm); it wdSithen extended ahead of the crack tip using a razor blade. The specimen was sup-
ported by the span shown in Table 1, anf#a load was applied to the specimen at a crosshead speed of 1 mm/min for the test
with span lengths of 60 and 120 mm; a crosshead speed of 2 mm/min was used for the test with a span length of 240 mm.
The test was conducted until the load markedly decreased.

Fig. 3 shows a typical load{loading-line deflection relation obtained by the SENB test. The crack always propagates unsta-
bly. If it propagated stably, the relation between the fracture toughness and crack propagation length (resistance curve, i.e. R-
curve) could be obtained and the characteristics of the fracture mechanics could be evaluated by the R-curve [ 14,15]. Because
of the unstable crack propagation, the R-curve could not be determined for any of the specimens tested here. Therefore, the
fracture mechanics properties were evaluated from the load at the initiation of crack propagation. As demonstrated in Fig. 3,
the load increases linearly until its maximum, and then drops immediately without displaying a nonlinear phase. As noted in
previous studies [ 14,16], the loading-line compliance increases before the load reaches its maximum value because the frac-
ture process zone (FPZ), a region of low stiffness, is produced ahead of the crack tip. Because of the FPZ, the effective crack
length does not correspond to the initial crack length at peak load. Additionally, Dourado et al. pointed out that the real crack
initiation occurred markedly after the peak load [17]. There are several definitions of the critical load for crack propagation
[18]. Further studies should be conducted to determine the critical load and the effective crack length at the initiation of
crack propagation. In this research, the load-deflection relation was linear and the crack propagated unstably, so the influ-
ence of the FPZ size was thought to be very small and the critical load for crack propagation, P, was determined as the max-
imum load. By substituting P; into Eq. (1), the nominal bending strength . corresponding to crack length a was obtained.
Then, the mode | critical stress intensity factor K. corresponding to the crack length was obtained by substituting f{a/W),
which was determined by the finite element calculation and &, into Eq. (2).
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Fig. 3. Typical example of the loadfloading-line deflection relation.

5. Results and discussion
5.1. Finite element analyses

Fig. 4 shows the relationship between the crack geometry factor fla/W) and the equivalent crack length a/W obtained by
finite element calculation for the models with three different dimensions. In this figure, the polynomial relation derived for
isotropic material [19], denoted as follows, is also represented.

a

I(W) =1.09- 1_735(

a

w) +3_20(E)2 - ]4_]8(%)3+ 14.5:!(1)4 (7)

W W

There was a concern that the orthotropy of the wood might influence the crack geometry factor. However, Fig. 4 shows that
the influence is so insignificant that Eq. (7) can be used as the crack geometry factor of this material. Hereafter, the mode |
stress intensity factor is calculated using the crack geometry factor represented by Eq. (7).

: W

Crack geometry factor fa/W)

0.5 o :VCCT, Specimen A
e : VCCT, Specimen B
A :VCCT, Specimen C
——:Eq.(7)
0 1 1 1 |
0 0.1 0.2 0.3 0.4 0.5

Equivalent crack length a/W

Fig 4. Relationships between the crack geometry factor fo/W) and the equivalent crack length a/W obtained by the VCCT and Eq. (7) proposed by Gross and
Srawley [15].
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5.2. Three-point single-edge-notched bending tests

Fig. 5 shows the relationship between the nominal bending strength a,,. and the crack length a. According to the results
for metals [ 3], the nominal bending strength of a cracked specimen will approach the bending strength of a crack-free spec-
imen when the crack length is decreased [3]. From the results obtained here, however, the value of ¢, is markedly smaller
than that of the crack-free specimen, and it decreases as the crack length increases. This suggests that fracture mechanics
theory is essential for analyzing the failure behaviour of a cracked specimen even when the crack length is short.

Fig. 6 shows the relationship between the mode [ critical stress intensity factor Kj. and the crack length a. As already dis-
cussed, an analysis based on fracture mechanics is essential even when the crack is short. Nevertheless, the dependence of K.
on a is still significant for short cracks. According to previous studies [14-17,20-23], an FPZ in which the material softens
progressively develops at the crack tip. Because of the FPZ, the cracked specimen often behaves as if the crack is longer than
its actual length. The low stiffness in the FPZ usually induces an increase in the loading-line compliance [16,17,21]. As Fig. 3
shows, however, the nonlinearity in the load/loading-line deflection relation is not significant, so the dependence of K. on a

may not be attributed to FPZ production alone. Nevertheless, the dependence can be moderated by introducing an additional
crack length - into Eq. (2):

K = o \./?r{TJr_mf(%) — auv/Tdf (HW) (8)
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Fig. 5. Relationship between the nominal bending strength &y, and crack length a.
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Fig 6. Relationship between the mode | critical stress intensity factor K. and crack length o

Table 3
Additional crack length and additional equivalent crack
length corresponding to each specimen type.

Specimen type  Additional crack length A (mm)

A 038
B 031
C 044
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Table 4
Mode [ critical stress intensity factor K. obtained with and without correcting the crack
length.

Specimen type Ky (MPay/m)

Crack length uncorrected Crack length corrected

A 0.53 0,077 0.58 +0.07*

B 0.40 + 0.04% 0.39 £ 0.05¢

c 0.43 003 0.44 £0.04"

Results are averages + 5D. Crack length o used for obtaining K.
1051, 2,3 4and 5 mm.
B2 4 6 9and 12 mm.
© 2, 4and 8 mm.
4 Al data including those at a = 0.

where a’ is defined as the corrected crack length. Table 3 shows the value of the additional crack length A corresponding to
each specimen type. The value of A was determined a follows: (1) the values of K. were calculated under various values of A
in Eq. (8), (2) the standard deviations of K. corresponding to each crack length were obtained, and (3) the sums of the stan-
dard deviations, defined as sp, corresponding to each A were obtained and compared. The value of A in Table 3 was deter-
mined as that from which the smallest value of s was derived. In previous studies [15,22,23], the value of A is physically
determined based on the concept of the FPZ, and the validity is verified by finite element analyses. This method may be effec-
tive for determining the value of 4. As previously noted, however, it is difficult to confirm that A is due to FPZ production
alone. Therefore, the inverse method described above was adopted. Further research should be carried out to reveal the
physical meaning of the additional crack length.

Fig. 7 shows the relationship between the mode [ critical stress intensity factor K and the corrected crack length a’. With
the crack-length correction, the dependence of K. on the crack length is less significant than it is without the correction.
Therefore, the crack-length correction is effective.

Table 4 shows the average values of K. obtained with and without crack-length correction. As described above, K|, tends
to be small when the crack is short and when the crack length is not corrected. Thus, the values shown in Table 4 are ob-
tained by averaging the Kj. values obtained for large crack lengths where the value of K. is not dependent on the crack
length. In contrast, the dependence of K. on the crack length is less significant when the crack length is corrected, so K
is obtained by averaging all data including those at a = 0. The relationships between ¢, and a are predicted by substituting
the values of K., a and fla/W) into Eq.(2), and K, a’ and f{a' [W)into Eq. (8). Fig. 8 compares the predicted and experimentally
obtained &y.—a relationships. When the crack length is not corrected, the predicted strength increases markedly when the
crack length approaches zero. When the crack length is corrected, however, the o, .-a relationship is predicted effectively
over the full range of crack lengths, including when a = 0. Therefore, the failure behaviour is probably described by fracture
mechanics theory even when the specimen has no crack.

As described above, the load/loading-line deflection relation does not represent the nonlinearity, so it is difficult to con-
firm that the additional crack length A is due to the FPZ alone because of the small value of A. From the experimental results
obtained here, however, it is also difficult to identify the source of A definitively, so the value of 4 obtained here should be
regarded as a correction of initial crack length. The anatomical structure of wood such as inherent cracks and cavities may
have some influence on the value of A, and further researches including microscopic observation allow this phenomenon to
be more clearly understood.
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Fig. 8. Comparison of nominal bending strengths experimentally obtained and predicted on the basis of fracture mechanics theory.

6. Conclusion

Using specimens of agathis, SENB tests were conducted to analyze the failure behaviour of wood samples each containing
a short crack.

According to previous study on metals conducted by lrwin et al. [3], crack length has little influence on the nominal bend-
ing strength when the crack is sufficiently short. In the experimental results obtained here, however, the nominal bending
strength decreased with increasing crack length, and it was markedly lower than that of a crack-free specimen. Therefore,
the fracture mechanics theory is essential for analyzing the failure behaviour of wood even when the crack length is very
short.

The mode I critical stress intensity factor decreased when the crack length approached zero. With crack-length correction,
however, the critical stress intensity factor was appropriately obtained over a wide range of crack lengths.

When the crack length was corrected, the relationship between the nominal bending strength and crack length was pre-
dicted effectively throughout the full range of crack lengths, even in the crack-free specimen.
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