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Asymmetric four-point bending tests of agathis specimens with a short crack along the
neutral axis in a tangential–longitudinal system were conducted onto analyse the failure
behaviour of wood with a short crack. The nominal shear strength and Mode II critical
stress intensity factors of the specimens with various crack lengths were measured, and
the influence of crack length on these properties was examined. The nominal shear
strength of the cracked specimens was significantly lower than the strength of a crack-free
specimen, even when the crack was extremely short. This finding suggests that the fracture
mechanics theory is effective for analysing the failure behaviour of wood with a very short
crack in this loading condition. However, the Mode II critical stress intensity factor still
depends on the crack length. When the crack length was corrected with considering the
formation of fracture process zone ahead of the crack tip, the critical intensity factor could
be predicted effectively as well as the nominal shear strength.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Over the years, the failure and fracture behaviours of materials with short cracks have been analysed in studies on various
metals. According to the research on aluminium 7076-T6 by Irwin et al. [1], the nominal strength value of a cracked spec-
imen coincides approximately with the actual strength of the specimen, which is measured using a crack-free specimen
when the crack is shorter than a certain critical length. Therefore, the fracture mechanics theory is not effective for predicting
the failure behaviour of specimens with a short crack. This phenomenon was described in many texts on fracture mechanics
and it is reasonable to assume that this theory could be widely applicable to various materials including wood [2]. Never-
theless, the bending failure and Mode I fracture behaviours of wood with short cracks are extremely contradictory based
on descriptions in the current texts. In previous studies, single-edge-notched bending (SENB) tests of agathis were conducted
using specimens with a short crack, and it was suggested that the Mode I critical stress intensity factor could be predicted
effectively when the crack length was corrected [3,4]. The correction of crack length also enables the prediction of nominal
bending strength of cracked and crack-free specimens based on fracture mechanics theory. These behaviours may also be
applicable for those obtained from the other conditions, such as shear-dominant condition in which in-plane shear failure
or Mode II fracture propagation is induced.

To examine the in-plane shear failure and Mode II fracture behaviours of materials with short cracks, Mode II fracture
tests should be conducted using cracked and crack-free specimens. End-notched flexure (ENF) tests are usually conducted
because the Mode II energy release rate GII can be determined in a rigorous manner [5–9]. Nevertheless, it is difficult to con-
duct ENF tests using specimens with short cracks. This difficulty is also applicable to other Mode II fracture test methods,
. All rights reserved.
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Nomenclature

2a crack length
2a0 initial crack length
2aeq equivalent crack length
C loading-line compliance
C0 initial loading-line compliance
Cc loading-line compliance at the initiation of crack propagation
EL Young’s modulus in the longitudinal direction
ER Young’s modulus in the radial direction
ET Young’s modulus in the tangential direction
f(2a/s) crack geometry factor
Fj

x nodal force at the crack tip in the x-direction
Fj

y nodal force at the crack tip in the y-direction
Fj

z nodal force at the crack tip in the z-direction
G energy release rate
GII Mode II energy release rate
GLR shear modulus in the longitudinal–radial plane
GLT shear modulus in the longitudinal–tangential plane
GRT shear modulus in the radial–tangential plane
K stress intensity factor
KII Mode II stress intensity factor
KIIc critical value of the Mode II stress intensity factor
P applied load
Pc critical load for crack propagation
s shear span
T thickness at the middle section of the specimen
v loading-line displacement
W depth of the specimen
x vertical direction of the specimen
y horizontal direction of the specimen

di
x relative crack face displacement between the nodes adjacent to the crack tip in the x-direction

di
y relative crack face displacement between the nodes adjacent to the crack tip in the y-direction

di
z relative crack face displacement between the nodes adjacent to the crack tip in the z-direction

D additional crack length
Dx length in the x-direction of the element at the delamination front
Dy length in the y-direction of the element at the delamination front
Dz length in the z-direction of the element at the delamination front
mLR Poisson’s ratio in the longitudinal–radial plane
mLT Poisson’s ratio in the longitudinal–tangential plane
mRT Poisson’s ratio in the radial–tangential plane
sn nominal shear stress
snc nominal shear strength

List of acronyms
3ENF three-point bend end-notched flexure
AFPB asymmetric four-point bending
ENF end-notched flexure
FPZ fracture process zone
VCCT virtual crack closure technique
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such as compact shear (CS) [10], double edge notched shear (DENS) [10,11]. In addition, it is difficult to obtain the actual
shear strength of crack-free specimen from the CS and DENS tests. In contrast, asymmetric four-point bending (AFPB) tests
using tapered specimens (details of the specimens are described below) enabled the examination of the in-plane shear fail-
ure and Mode II fracture behaviours of wood with a short crack.

In the present study, AFPB tests were performed with specimens of agathis with varying crack lengths that were much
shorter than the lengths that were utilised in several existing studies involving ENF tests [5–9]. The nominal shear strength
and Mode II critical stress intensity factor were analysed based on elementary beam theory and linear fracture mechanics
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theory, respectively. The results ultimately revealed the appropriate method for analysing the failure and fracture behav-
iours of wood with short cracks.
2. Asymmetric four-point bending test analyses for a cracked specimen

Fig. 1 shows a schematic diagram of the asymmetric four-point bending (AFPB) test for a tapered specimen with a short
crack along the neutral axis. Murphy conducted the AFPB test on wood from a Douglas fir with a straight specimen with a
long crack to measure the Mode II critical stress intensity factor [12]. When the crack was short or does not exist, however,
failure by bending behind the loading point cannot be prevented [13]. Therefore, the cutting of tapers on both sides of the
specimen was therefore effective for preventing the specimen from failure through bending [14]. A specimen with a crack of
length 2a at its centre was asymmetrically supported at two trisected points and the loads were applied at the remaining two
points. The crack length was defined as 2a, and the distance between the supporting and loading points, which is called shear
span, was defined as s. Under these loading conditions, the nominal shear stress along the neutral axis of the middle section
sn was derived from elementary beam theory as follows [14]:
Fig. 1.
represe
sn ¼
3P

4WT
; ð1Þ
where W is the beam depth, T is the thickness at the middle section, and P is the applied load. This notation is also applicable
to crack-free specimens. When a crack-free specimen was bent, the failure-by-shearing force was induced at the neutral axis
when sn reached its critical value snc, which was defined as the shear strength of the material.

Fracture behaviour is generally analysed with the stress intensity factor K or the energy release rate G. Each factor is de-
rived from fracture mechanics theory. The value of G can be determined with energy considerations and is mathematically
well defined, while K is regarded as a localised parameter that is influenced by microstructural, local anisotropy [15]. In
terms of rigor, the measurement of G, which requires the load–deformation relation to correspond to the crack length, is
preferable to the rigor of K. For measuring the Mode II energy release rate GII by an AFPB test, a compliance calibration meth-
od, which requires the relationship between the loading-line compliance and crack length, can be adopted. Nevertheless, it is
difficult to detect the variation of compliance because of the small crack length variation. In contrast, the Mode II stress
intensity factor KII, which does not require the loading-line compliance, is more easily measured with an approximating
equation and is less mathematically rigorous.

The Mode II stress intensity factor KII was derived using the following equation:
K II ¼ sn
ffiffiffiffiffiffi
pa
p

f
2a
s

� �
; ð2Þ
where f(2a/s) is the crack geometry factor, which is usually determined by finite element method (FEM) calculations. The
fracture was initiated when KII reached the critical stress intensity factor, defined as KIIc, which was obtained by substituting
snc for sn in Eq. (2).
Schematic diagram of the asymmetric four-point bending (AFPB) test of a notched specimen. (a) Side view, (b) top view. Unit = mm. L, T, and R
nt the longitudinal, tangential, and radial directions, respectively.



2778 C.M.E. Susanti et al. / Engineering Fracture Mechanics 78 (2011) 2775–2788
3. Finite element calculations

To determine the crack geometry factor f(2a/s), three-dimensional FEM calculations were performed using ANSYS version
5.7 from the Information Initiative Center of Hokkaido University. Fig. 2 shows the finite element mesh of the AFPB speci-
men. The crack length 2a varied from 1 to 8 mm at intervals of 1 mm. The mesh was refined closer to the crack tip, as shown
in Fig. 2c and d. Table 1 shows the elastic properties used in the calculations. These properties were determined by the com-
pression and vibration tests described in Section 4.2. The length, thickness, and width directions of the model were defined
as the x-, y-, and z-directions, respectively. These directions corresponded to the longitudinal (L), tangential (T), and radial (R)
directions of the wood. A crack was produced along the L direction in the LT plane, which is the so-called TL system.
Fig. 2. The finite element model used for the AFPB test analysis. Unit = mm. L, T, and R represent the longitudinal, tangential, and radial directions,
respectively. (a) Top view of the overall mesh, (b) side view of the overall mesh, (c) details of Zone A in (a) and (d) details of Zone B in (c). The crack length 2a
varied from 1 to 8 mm at intervals of 1 mm.



Table 1
Elastic constants used for the finite element calculation.

Young’s modulus (GPa) Shear modulus (GPa) Poisson’s ratio

EL ET ER GLT GTR GLR mLT mTR mLR

14.6 0.68 0.87 0.84 0.14 1.00 0.44 0.45 0.44

L, R, and T represent the longitudinal, radial, and tangential directions, respectively.
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The models were asymmetrically supported in the vertical direction at x = 7.5 mm and at x = 97.5 mm. Additionally, a ver-
tical displacement uy of 1 mm was asymmetrically applied downward at the node at x = 52.5 mm and at x = 142.5 mm.

Mode I, Mode II, and Mode III strain energy release rate components were calculated with the three-dimensional virtual
crack closure technique (VCCT) [16] as follows:
GI ¼
Fj

ydi
y

2DxDz

GII ¼ Fj
xdi

x
2DxDz

GIII ¼ Fj
zd

i
z

2DxDz

8>>>><
>>>>:

; ð3Þ
where Fj
x, Fj

y, and Fj
z are the nodal forces at the crack tip node j in the x-, y-, and z-directions, respectively, Dx and Dz are the

lengths in the x- and z-direction of the element at the crack tip. Additionally, di
x, di

y, and di
z are the relative displacements

between nodes i and i0, which are located at a distance Dx (=0.25 mm) behind the crack tip in the x-, y-, and z-directions,
respectively. In the calculations, the Mode I and Mode III strain energy release rate components were almost zero. As such,
the fracture mechanics behaviour could be considered a part of the pure Mode II condition.

In addition to the VCCT, the value of GII was calculated from the relationship between the loading-line compliance C and
half crack length a based on the compliance calibration method. To reduce the influence of indentation at the loading and
supporting points, the displacements at the points P1, P2, P3, and P4 in Fig. 2, which were defined as v1, v2, v3, and v4, respec-
tively, were obtained. The loading-line displacement v was obtained by the following equation:
v ¼ 1
2
ðv2 þ v4Þ �

1
2
ðv1 þ v3Þ; ð4Þ
The loading-line compliance C was derived as v/P, and the C–a relationship was obtained by varying a. The relationship
was approximated by the following 4th polynomial equation:
C ¼ A0 þ A1aþ A2a2 þ A3a3 þ A4a4; ð5Þ
The strain energy release rate obtained by this model should be halved because this model contains two crack tips, so it is
calculated from the work required to let one equivalent crack tip propagate. Using Eq. (5), the value of GII was given as:
GII ¼
1
2
� P2

2B
� @C
@a
¼ P2

4B
A1 þ 2A2aþ 3A3a2 þ 4A4a3� �

; ð6Þ
The value of GII obtained by the VCCT was transformed into the Mode II stress intensity factor KII by the following equa-
tions [17]:
K II ¼

ffiffiffiffiffiffiffiffiffiffi
ExGII

cII

s
; ð7Þ
where Ex is Young’s modulus in the x-direction, which corresponds to the L direction, and
cII ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex

Ey

s
þ 1

2
Ex

Gxy
� 2mxy

� �vuut ; ð8Þ
where Ey is Young’s modulus in the y-direction, which corresponds to the T direction, and Gxy and mxy are the shear modulus
and Poisson’s ratio in the xy-plane, which corresponds to the LT plane, respectively. The crack geometry factor f(2a/s) was
derived from Eqs. (1), (2), and (7) as follows:
f
2a
s

� �
¼ 4WT

3P
ffiffiffiffiffiffi
pa
p

ffiffiffiffiffiffiffiffiffiffi
ExGII

cII

s
: ð9Þ
By substituting the total load applied to the finite element model P and GII as calculated by the VCCT into this equation, a
value of f(2a/s) corresponding to the crack length-to-shear span ratio 2a/s was obtained.
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4. Experiment

4.1. Materials

Agathis (Agathis sp.) lumber, with a density of 480 ± 10 kg/m3 with 12% moisture content (MC) was used for the tests. The
lumber had no defects such as knots or grain distortions so that the specimens cut from it could be regarded as small and
clear. The lumber was stored for several months in a room at a constant temperature of 20 �C and a relative humidity of 65%
before the test. The wood was confirmed to be in an air-dried condition. These conditions were maintained throughout the
tests. The equilibrium MC was approximately 12%.

4.2. Compression and vibration tests for measuring the elastic constants

For the FEM analyses, Young’s moduli in the L, T, and R directions (EL, ET, and ER, respectively), the shear moduli in the LT,
TR, and LR planes, (GLT, GTR, and GLR, respectively), and Poisson’s ratio in the LT, TR, and LR planes, (nLT, nTR, and nLR, respec-
tively), were required. These constants were measured through compression and vibration tests.

The Young’s moduli and Poisson’s ratios were measured by compression tests. A short-column specimen with dimensions
of 30 mm � 15 mm � 15 mm was prepared from the lumber described above. The long axis coincided with the direction
where Young’s modulus was to be measured. Biaxial-strain gauges (gauge length = 2 mm; FCA-2-11, Tokyo Sokki Kenkyujo
Co., Ltd., Tokyo, Japan) were bonded at the centres of the planes where the Young’s moduli and Poisson’s ratios were to be
measured, and a compression load was applied along the long axis of the specimen at a crosshead speed of 0.5 mm/min.
From the stress–strain relationship in the loading direction, Young’s moduli were obtained. Poisson’s ratios were obtained
from the relationship between the loading and transverse strains.

The shear moduli were determined by free–free flexural vibration tests. A beam specimen with dimensions of 140, 30,
and 15 mm in length, thickness, and width, respectively, was prepared. The specimen was suspended by threads at the nodal
positions of the free–free resonance vibration mode and the specimen was excited in the width direction by a hammer. The
first to fourth resonance frequencies in bending were measured and analysed by a fast Fourier transform (FFT) analysis pro-
gram. The shear modulus in the length–thickness plane was calculated by Hearmon’s iteration method, the details of which
are described in [18].

4.3. Asymmetric four-point bending tests of cracked and crack-free specimens

All of the specimens were cut from the lumber described above so that they were long-matched. The specimens initially
had the dimensions of 150 (L) � 15 (T) � 15 (R) mm3. As shown in Fig. 1b, tapers were cut on both LT planes by a router. The
width at the middle section was 5 mm.

For cracked specimens, the crack was produced along the L direction in the TL system. In this experiment, it was difficult
to use a band saw and razor blade, which was used in several previous investigations [5–12] since the crack was too short to
use these tools. Instead, multiple holes (diameter = 0.5 mm) were first cut with a drill. Then the holes were connected with
each other with an electrodeposited wire (diameter = 0.265 mm). The crack was finally extended to the length as described
below with the wire. There was a concern that the crack tip cut by the wire was blunt. In the preliminary tests, AFPB tests
were conducted using the specimens with a long crack, which was extended by the wire and razor blade. It was confirmed
that the sharpness of the crack tip cut by the wire was similar to the tip cut by the razor blade. The crack length 2a varied
from 0 (crack-free specimen) to 8 mm by intervals of 2 mm. Five specimens were used for each test condition.

Fig. 3 shows the experimental setup of the AFPB test. Each specimen was supported asymmetrically at two trisected
points and loaded at the remaining two trisected points. The radius of loading and supporting nose was 15 mm. Then a load
was applied to the specimen at a crosshead speed of 1 mm/min. The test was conducted until the load markedly decreased.
As shown in this figure, the displacements at the points behind the loading and supporting points were measured by four
cantilever type displacement transducers (CE-10, Tokyo Sokki Kenkyujo Co., Ltd., Tokyo, Japan). The loading-line displace-
ment v was calculated using Eq. (4).

Fig. 4 shows a typical relationship between the load and loading-line displacement obtained by the AFPB test. The load
initially increases linearly, then it increases nonlinearly until it reaches the maximum value, then it drops immediately.
Fig. 3. Experimental setup of the AFPB test.



Fig. 4. Typical example of the relationship between the load P and loading-line displacement v. C0, Cc, and Pc represent the initial loading-line compliance,
loading-line compliance at the initiation of crack propagation, and the critical load for crack propagation, respectively.
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Based on our observations of the test, the crack propagation occurred when the load was close to its peak value. As noted in
previous studies [19,20], loading-line compliance increases before the load reaches its maximum value because the fracture
process zone (FPZ), a region of low stiffness, is produced ahead of the crack tip. Because of the FPZ, the effective crack length
does not correspond to the initial crack length at peak load. Additionally, Dourado et al. pointed out that the real crack ini-
tiation occurred markedly after the peak load [21]. Although stable crack propagation was not observed during loading, the
FPZ might influence the relationship between the load and loading-line displacement. In this study, however, the crack prop-
agation could not be observed at the onset of nonlinearity, but it occurred brittly when the load was close to its peak value.
Therefore, the critical load for crack propagation Pc was provisionally determined to be the maximum load. In addition, the
initial crack length was provisionally used for the analysis, although the determination method of effective crack length is
described below. To determine the critical load and the effective crack length at the initiation of crack propagation in detail,
however, further studies are required, especially because there are several definitions of the critical load for crack propaga-
tion [22].

By substituting Pc into Eq. (1), the nominal shear strength snc corresponding to crack length 2a was obtained. Then the
Mode II critical stress intensity factor KIIc corresponding to the crack length was obtained by substituting f(2a/s), which
was determined by the finite element calculation and snc in Eq. (2).
4.4. Three-point bend end-notched flexure tests

Mode II fracture mechanics properties can be determined precisely by end-notched flexure (ENF) test, which is of accor-
dance to beam theory and energy considerations [15]. Therefore, it is meaningful to compare the KIIc value obtained from the
AFPB test with that obtained from the ENF test. Based on this concept, three-point bend end-notched flexure (3ENF) test was
conducted and the results obtained were compared with those obtained from the AFPB tests.

Fig. 5 shows a diagram of 3ENF test. All of the specimens were cut from the lumber described above. The specimens with
the TL-system had initial dimensions of 450 (L) � 30 (T) � 15 (R) mm3.
Fig. 5. Schematic diagram of the three-point bend end-notched flexure (3ENF) test. L, T, and R represent the longitudinal, tangential, and radial directions,
respectively.
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The crack was first cut with a band saw (thickness = 1 mm) then extended ahead of the crack tip with a razor blade. After
the crack was cut in the specimen, two sheets of 0.5 mm-thick Teflon film were inserted between the crack surfaces to re-
duce the friction between the upper and lower cantilever beams. In the 3ENF test, the initial crack length a0, which was de-
fined as the distance from the support of the cracked portion to the crack tip, was 100 mm. The specimen was supported by
400-mm spans. As shown in Fig. 5, a steel platen 30 mm in length was placed between the specimen and the support to avoid
an indentation at the supporting point. The platen could rotate around the supporting point. Therefore, it did not interrupt
the deformation of the specimen. A load was applied to the midspan until the crack tip drew close to the midspan. The cross-
head speed was 1 mm/min. The total testing time was about 10 min.

A displacement gauge was set below the midspan, and the loading-line displacement d was obtained. The longitudinal
strain ex was measured by a strain gauge (gauge length = 2 mm; FLA-2-11, Tokyo Sokki Kenkyujo Co., Ltd., Tokyo, Japan) that
was bonded to the bottom surface of the midspan. The displacement gauge was set carefully in order not to touch the
displacement rod on the strain gauge. The loading-line compliance CL, the load at the onset of nonlinearity PNL, and the
load-longitudinal strain compliance CS were determined. The Mode II initiation fracture toughness GIIc was determined by
substituting CL, CS, and PNL into the following equation [6]:
Fig. 6.
strain e
GIIc ¼
3P2CS

4BLH
2LH � CL

CS
� 2

3
L3

� �2
3

; ð10Þ
where 2H is the depth of the specimen and B is the width of the beam and crack. The value of GIIc was transformed into KIIc by
substituting Ex, Ey, Gxy, and nxy, which correspond to EL, ET, GLT, and nLT in Table 1, respectively, into Eqs. (8) and (9). The val-
ues of KIIc obtained by the 3ENF tests were compared with the values obtained by the AFPB tests.

5. Results and discussion

5.1. Finite element analyses

Fig. 6 shows the results of FE analyses. Fig. 6a shows the dependence of the loading-line compliance C on the half crack
length a. The C–a relationship is regressed into the 4th polynomial function as follows:
C ¼ 3:3496� 10�7 þ 1:0087� 10�7aþ 2:9589� 10�5a2 þ 2:2481� 10�3a3 � 1:124a4: ð11Þ
Fig. 6b shows the normalised strain energy release rate GII/P2 calculated by the VCCT and compliance calibration method.
Note that the values of GII/P2 obtained by the different methods are close to each other, so the C–a relationship shown in
Fig. 6a is valid. Nevertheless, the value of C does not vary significantly with crack length, so the variation in C shown here
would be obscured by measurement error in the actual AFPB test. This makes it difficult to obtain GIIc by the compliance cal-
ibration method. In addition, the insensitivity of C on a makes it difficult to determine the effective crack length at the crack
propagation, the detail of which is described below.

Fig. 7 shows the relationship between the crack geometry factor f(2a/s) and the crack length-to-shear span ratio 2a/s ob-
tained by finite element calculation. This relationship can be regressed into the following third polynomial equation:
Results of FE calculations of AFPB tests. (a) Dependence of the loading-line compliance C on the crack length a, and (b) comparison of the normalised
nergy release rates GII/P2 calculated by the virtual crack closure technique and compliance calibration method.



Fig. 7. Relationships between the crack geometry factor f(2a/s) and the crack length-to-shear span ratio 2a/s obtained by the VCCT and the regressed
equation represented as Eq. (12).
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f
2a
s

� �
¼ 0:90742� 0:85428

2a
s

� �
þ 10:024

2a
s

� �2

� 25:863
2a
s

� �3

: ð12Þ
The Mode II stress intensity factor was calculated using the crack geometry factor represented by Eq. (12).

5.2. Asymmetric four-point bending tests of cracked and crack-free specimens

Fig. 8 shows the relationship between the initial loading-line compliance C0 and crack length 2a experimentally obtained
and comparison with that obtained by the FE analyses. The C0–2a relationships coincide well with each other, so the rela-
tionship between the load and loading-line displacement can be obtained appropriately while reducing the influence of
indentation. Nevertheless, the value of C0 experimentally obtained varies significantly, so it is difficult to formulate the
C–a relationship based on the experimental results, although it can be determined as Eq. (11) from the FEA results.

In Fig. 3, the failure of crack-free specimen (2a = 0 mm) is shown. As shown in this photograph, failure was induced along
the neutral axis of the middle section for the crack-free specimen so that the value of snc for the crack-free specimen could be
regarded as the actual shear strength of the material.
Fig. 8. Comparison of the loading-line compliances numerically and experimentally obtained.



Fig. 9. Typical example of the crack path obtained in the asymmetric four-point bending specimen. Crack length 2a = 4 mm.
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Fig. 9 shows a typical example of the crack path in the AFPB specimen. The crack initially propagated straightforward by
sliding, then it deviated from the neutral axis when the crack tip approached the loading line. There was a concern that
mixed-mode loading condition was induced when the crack propagated obliquely. The indentation at the loading nose might
influence on the curvature in the crack propagation because the crack tip approached to the loading line where the influence
of indentation was marked. As shown in Fig. 9, however, the crack propagated straight at its initiation. Therefore, fracture
mechanics theory could be applied for analysing the Mode II fracture behaviour.

Fig. 10 shows the relationship between the nominal shear strength snc and the crack length 2a. When conducting Thomp-
son test, there were no outliers in the snc values, so five specimens, which were used in one test condition, were also used to
calculate the mean values and standard deviations. Statistical analysis revealed that the value of snc was markedly smaller
than that of the crack-free specimens. In the single-edge-notched bending (SENB) test of agathis, the nominal bending
strength of a cracked specimen was markedly smaller than the strength of the crack-free specimen [3,4], so the tendency
obtained here agrees with that obtained in the previous work [3,4]. This test result suggests that fracture mechanics theory
is essential for analysing the failure behaviour of a cracked specimen even when the crack length is short.

Fig. 11 shows a comparison of KIIc, obtained from the AFPB test, and KIIc, from the 3ENF test. When conducting Thompson
test, there were no outliers in the KIIc values, so five specimens, which were used in one test condition, were also used to
calculate the mean values and standard deviations. The value of KIIc obtained using the peak load should be larger than those
obtained using any other definitions of critical load. In this research, the critical load for crack propagation Pc was defined as
the peak load in the AFPB test, so the KIIc value obtained here was larger than those obtained under any other definitions of
Pc. Nevertheless, statistical analysis revealed that KIIc obtained from the AFPB test was significantly smaller than the value
obtained from the 3ENF test at a significance level of 0.01. The analysis also revealed that the dependence of KIIc on 2a
was significant. Therefore, Eq. (2) could not be used for determining the appropriate KIIc value.
Fig. 10. Relationship between the nominal shear strength snc and crack length 2a.



Fig. 11. Relationships between the Mode II critical stress intensity factor KIIc and crack length 2a obtained by AFPB tests compared to the results obtained
from 3ENF tests. KIIc from the AFPB test was calculated using Eq. (2), in which the crack length was not corrected.
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5.3. Consideration of additional crack length

According to previous studies, the cracked specimen often behaves as if the crack is longer than its actual length because
of deformation around the crack tip, deflection caused by shearing force, and the development of an FPZ at the crack tip
[3–8,19–30]. Therefore, it is feasible that the cracked AFPB specimens in this study also behaved as if the crack were longer
than the actual length. The relationship between KII and a can be moderated by introducing an additional crack length D into
Eq. (2):
K II ¼ sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ DÞ

p
f

2ðaþ DÞ
s

� �
; ð13Þ
To determine the value of D, following two methods were examined: (1) compliance calibration method, and (2) com-
parison of the results obtained by the AFPB tests with those obtained by the 3ENF tests.

The equivalent crack length aeq, in which the additional crack length is contained, is obtained from the relationship be-
tween loading-line compliance C and crack length a. When the C–a relationship is calibrated as C = F(a) such as Eq. (11), the
equivalent crack length aeq can be determined using the loading-line compliance at the initiation of crack propagation (Cc in
Fig. 4). The additional crack length D is then obtained as follows:
D ¼ aeq � a0; ð14Þ
where a0 is the initial crack length. This method is valid from the viewpoint of energy considerations [7,8,15,19,21,23,25–27].
The value of aeq was computed through a dichotomic process [25]. As described above, however, it was difficult to obtain the
C–a relationship appropriately based on the experimental results. Although Eq. (11) was used instead of using the experi-
mental results, the value of aeq could not be obtained properly because the value of Cc varied in the same initial crack length
a0. To obtain the value of D by this method properly, the value of C should be sensitive to the variation of a. As described
above, however, the insensitivity of C on a makes it difficult to determine the equivalent crack length at the crack propaga-
tion, although this method is valid.

Instead of using the relationship between the load and loading-line displacement, the value of D was obtained by com-
paring the data of 3ENF test. In the 3ENF test, the value of GIIc, which can be determined with energy considerations and is
mathematically well defined as described above [15]. Therefore, the value of KIIc calculated by transforming the value of GIIc

obtained from the 3ENF test can be regarded as valid. In addition, the validity of ENF test has been variously verified in
several previous investigations [5–10,12,32]. Although the comparison method is less rigorous mathematically than the
compliance calibration method described above, it was effective for determining the D value, and this method was applied
to the determination of D in the Mode I fracture system in the SENB, SENT, and CT tests of wood [29,30,33]. In a way similar
to previous studies [29,30,33], the appropriate value of D was determined as follows: (1) By altering the value of D, the
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P-value for the average values of KIIc obtained by the AFPB test corresponding to each 2a and 3ENF test can be calculated; (2)
The P-values corresponding to each D can be summed. When the amount of P-values is large, the average values of KIIc ob-
tained by the AFPB and 3ENF tests can be regarded as being close to one another. From this procedure, the additional crack
length D is determined as 3.6 mm. In previous studies [20,26–28], the additional crack length was physically determined
based on the concept of the FPZ, of which size depends on the specimen geometry, and the validity was verified by FEM anal-
yses. This method may be effective for determining the value of D. From the test results, however, it was difficult to confirm
that the value of D was based on FPZ production alone as described above. In addition, appropriate results were obtained
when supposing a constant value of D for the specimens with a same geometry but with various crack length [29–32]. There-
fore, the value of D was supposed to be constant, and the inverse method of the procedure described above was adopted.
Further research should be carried out to determine the physical meaning of the additional crack length.

Fig. 12 shows the relationship between the Mode II critical stress intensity factor KIIc and crack length 2a. With the crack
length correction, the dependence of KIIc on the crack length was less significant than it was without the correction.
Statistical analysis of the difference between the KIIc values obtained using the AFPB and 3ENF tests showed that the
difference was not significant, although testing conditions, such as the initial crack length, between the AFPB and 3ENF tests
were extremely different from each other. Therefore, it was suggested that the crack-length correction was effective for
analysing the Mode II fracture behaviour of wood, although the physical aspect of additional crack length was not sufficiently
revealed.

Table 2 shows the average values of KIIc obtained with and without crack-length correction. When the crack length was
not corrected, the values shown in Table 2 were obtained by averaging the KIIc values without using the data at 2a = 0 mm,
which is inevitably zero, although the value of KIIc is dependent on crack length. In contrast, the dependence of KIIc on the
crack length was less significant when the crack length was corrected. As such, KIIc was obtained by averaging all the data,
including the data at 2a = 0 mm. The relationships between snc and a were predicted by substituting the values of KIIc, a, and
f(2a/s) into Eq. (2), and KIIc, a, D, and f(2(a + D)/s) into Eq. (13). Fig. 13 compares the predicted and experimentally obtained
snc–2a relationships. When the crack length was not corrected, the predicted strength increased markedly as the crack
length approached zero. When the crack length was corrected, however, the snc–2a relationship was effectively predicted
over the full range of crack lengths, including 2a = 0. Therefore, the failure-by-shearing behaviour, as well as the failure-
by-bending behaviour, can be described by fracture mechanics theory even when the specimen has no crack [3,4].

As described above, it was difficult to reveal the source of the additional crack length D. Although the value of D obtained
in this study may have been influenced by a FPZ, the value should be regarded as a correction of initial crack length. If the
value of D was due to the FPZ alone, it can be physically determined and its validity can be verified by FEM analyses
[23,26,27]. In addition, microscopic observations around the crack tip could be enhanced to reveal the source of D. It is re-
quired to evolve the testing method into that in which the loading-line compliance is sensitive to the variation of crack
length even in the range of short length. Further studies, including appropriate loading conditions, FEM analyses,
Fig. 12. Relationships between the Mode II critical stress intensity factor KIIc and crack length 2a obtained by AFPB tests compared to the results obtained
with 3ENF tests. KIIc from the AFPB test was calculated using Eq. (13), in which the correction crack length D was taken into account.



Table 2
Mode II critical stress intensity factors KIIc obtained with or without correcting the crack length.

Crack length uncorrected Crack length corrected

1.10 ± 0.35a 1.73 ± 0.31b

The results are means ± SD.
a The crack lengths 2a used for obtaining KIIc were 2, 4, 6 and 8 mm.
b The crack lengths 2a used for obtaining KIIc were all data including those at 2a = 0.

Fig. 13. Comparison of nominal shear strengths that were experimentally obtained or predicted on the basis of fracture mechanics theory.
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microscopic observations, frequencies of the tests, and the improvement of testing method should be conducted to better
understand this phenomenon.
6. Conclusion

Using agathis specimens, AFPB tests were conducted to analyse the failure behaviour of wood specimens containing a
short crack under shear-dominant conditions. The results were compared to those obtained with 3ENF tests.

The nominal shear strength was markedly lower than the strength of a crack-free specimen. Therefore, the fracture
mechanics theory was essential for analysing the failure behaviour of wood, even when the crack length was very short.

The Mode II critical stress intensity factor KIIc, obtained with the AFPB test, decreased as the crack length approached zero.
In addition, the KIIc was significantly smaller than that obtained using the 3ENF test. With crack-length correction, however,
the KIIc obtained using the AFPB test was appropriately obtained over a wide range of crack lengths and was in agreement
with the KIIc obtained using the 3ENF test.

When the crack length was corrected, the relationship between the nominal shear strength and crack length was effec-
tively predicted for the full range of crack lengths, even in a crack-free specimen.
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