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Abstract  

The traditional rain-fed agriculture system of Ethiopia is suffering from climate change impacts and extremes. It needs 

to be improved to feed the growing population and create a resilient society. Climate-smart agriculture (CSA) is an 

approach intended to sustainably increase productivity, enhance household resilience, and reduce greenhouse gas 

emissions. This study was, therefore, undertaken to examine the effect of climate-smart agriculture (CSA) practices 

adoption on the food security of smallholder farmer households in a moist tropical montane ecosystem of South 

Western Ethiopia. A semi-structured questionnaire was used to collect data from 384 purposively selected households 

in a cross-sectional study. Fifteen key informant interviews and eight focus group discussions were also conducted to 

triangulate the reliability of the survey data collected. A total of eighteen CSA practices, adopted by farmers, were 

identified in the study area. These practices were further grouped into five packages by using principal component 

analysis and linked to food security by the multinomial endogenous switching regression model. The findings revealed 

that the highest impact of CSA adoption on food security was by households that adopt all the five category practices. 

Adopters of this package were 41.2% more food secure in terms of per capita annual food expenditure, 39.8 percent 

in terms of Household Food Insecurity Access Scale (HFIAS), and 12.1 percent in terms of Household Food 

Consumption Score (HFCS) than the non-adopters. The adoption of this package was further positively influenced by 

farm size, gender, and productive farm asset values. Using CSA practices in combinations and to a relatively larger 

extent has the potential to alleviate food security problems. Farmers need to be motivated by providing income-

generating activities and land fragmentation must be discouraged through public education. This in turn improves 

CSA adoption and initiates production assets investment that can absorb climate change risks.  

Keywords: Climate-smart agricultural practices  smallholder farmers  Food security  Multinomial endogenous 

switching regression model, Geshy watershed 
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1. Introduction  

In the era of climate change, climate-smart agriculture was first launched in 2009 as an approach to guide 

the management of agriculture (Ramachandran et al., 2015). The impact on sustainable food production, 

resilience, and mitigation can best be addressed by this approach (Acevedo, 2011; Endale et al., 2014; Grote 

et al., 2021). The primary indicators of climate change are increasing temperature, rising sea levels, melting 

ice caps, changing rainfall patterns, and changing humidity (IPCC, 2021). Secondary consequences that are 

direct determinants of agriculture are tidal surges, cyclones, floods soil salinity, and droughts (Hasan et al., 

2018). A crop model for sub-Saharan Africa forecasts that the adverse effect of crop damage on yields 

varies between 36 percent, 12 percent, and 13 percent for Ethiopia, Rwanda, and Uganda respectively 

(Thomas, 2020). Hence, climate change has noticeable negative impacts on food security (Atanga & 

Tankpa, 2021; Ilboudo Nébié et al., 2021; Mekonnen et al., 2021). Thus, the prioritization of food security 

in a changing climate has been subjected to discussions at all levels of government (Tefera et al., 2022). 

Climate-smart agriculture is recommended by development organizations and researchers in order to feed 

the growing population under scenarios of the declining yield of major crops. 

Ethiopia is a victim of the global climate change phenomenon despite its negligible per capita CO2 

emission, which is only 0.15 tons as compared to the global average of 4.79 in 2020 (Caporale et al., 2021). 

Ethiopia has experienced an increasing trend in average temperature (Belay et al., 2021; Gemeda et al., 

2021a). It is also obvious that dry seasons will get drier and wet seasons wetter (Gemeda et al., 2021a). The 

study area is experiencing early cessation, a delayed onset, an abundant rainfall, and poor belg performance 

making the watershed food insecure and forcing farmers to shift to livestock production, and grow short 

maturing and lower-yielding varieties 

The most cited definition of the concept of CSA as highlighted by Lipper et al. (2014) is ‘’an approach for 

transforming and reorienting agricultural systems to support food security under climate change realities’’. 

In a fluctuating climate, CSA can sustainably improve productivity and resilience (adaptation), 

remove/reduce greenhouse gas emissions (mitigation), and promote the efforts of national food security 

(Steenwerth et al., 2014; Thornton et al., 2018). For example, urea deep placement is a CSA practice that 

needs placing briquettes of urea (1 to 3 g/granule) deep in the soil from 7 to 10 cm depth after transplanting 

paddy rice. This practice, in Bangladesh, is found to minimize nitrogen loss by 40%, enhance 25% rice 

grain yield, reduce the cost of urea by 25%, and lower water pollution and greenhouse gas emissions (FAO, 

2014; Hasan et al., 2018). Available literature documented that CSA practices can improve the productivity 

of crops and hence contribute to food security (Chemura et al., 2021; HABTEWOLD, 2021; Teklewold et 

al., 2019). More than a quarter of the population of Ethiopia is food insecure. Ethiopia is ranked 90th out of 

116 countries and categorized as serious in the 2021 Global Hunger Index (WFP, 2022). Nevertheless, the 
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establishment of the direct link between food security and CSA practices adoption has received little 

attention to date (Hasan et al., 2018).  

The Ethiopian government, NGOs, and researchers are attempting to mitigate climate change’s adverse 

effects by developing a national CSA roadmap, promotion, and dissemination (Eshete et al., 2020; 

HABTEWOLD, 2021). Important thematic areas of the Ethiopian climate change Action Plan Strategy 

(Hirpha et al., 2020) are food security and enhancing the resilience capacity of communities (Mekonnen et 

al., 2021). 

The economy of Ethiopia is yet dependent on undeveloped rain-fed agriculture, which accounts for 80 

percent of exports, 40 percent of GDP, and an estimated 75 percent workforce of the country (Eshete et al., 

2020). Crop yields below the regional average, only 5 percent of irrigated land, weak market linkage, and 

limited use of improved seeds and fertilizers are common characteristics of Ethiopian agriculture (Alemu 

et al., 2019).  Based on the Worldometer report of the United Nation, the population of Ethiopia has risen 

by 49 percent in the last 20 years alone and reaches approximately 122 million in 2022 while the agricultural 

system has not been improved since (CIAT, 2017). The agrarian population constitutes 85 percent of the 

total population and the food security and livelihood situations are worsening (Tesfaye et al., 2021). These 

problems are yet exacerbated by global climate change impacts and extremes in the form of rainfall pattern 

anomalies and temperature rise (Gangadhara Bhat & Moges, 2021). CSA is currently promoted as an 

approach that can sustainably increase agricultural productivity, improve resilience and thereby enhancing 

household adaptation to climate change impacts, and reducing potential greenhouse gas emissions in Sub-

Saharan Africa. This is also an important intervention in Ethiopia to reduce the mentioned challenges.  

Smallholder farmers, through their indigenous knowledge, have been undertaking farming practices such 

as agroforestry, soil fertility management using organic manure, crop rotation, etc. This experience though 

not in the name of CSA laid a foundation for current CSA technologies. However, CSA farming is 

acknowledged as an important segment in climate change adaptation of agriculture (Autio et al., 2021), 

CSA impact on food security of smallholder farmer studies is lacking, particularly in Ethiopia, where 

national development programs promoting the adoption of CSA are not currently implemented at full scale 

(CIAT, 2017; Tesfaye et al., 2021). The objective of this paper is to address this issue by identifying the 

adoption of CSA and food security status for smallholder farmers that are climatically vulnerable in the 

Geshy watershed, South-West Ethiopia Vulnerability in the context of this watershed is justified especially 

by the decreasing trend in the amount of rainfall, which was 56.6, 40.1, and 32.4 mm per day for 1986, 

2005, and 2020 years respectively for the month of July. This month receives the maximum rainfall in 

Ethiopia.  Due to the rugged mountainous landscape nature of the watershed, the high amount of rainfall 

sweeps the top fertile soil and sometimes creates gully erosion that makes agricultural practices difficult.  
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The first three CSA practices frequently used by farmers were selected. These practices are not capital or 

knowledge-intensive and are within the nearby of farmers to be adopted. If these technologies show food 

security improvement, planning food security programs with CSA will be easier. Taking into account the 

above perspective, this study examines the association of CSA adoption with household food security 

considering the socioeconomic characteristics of smallholder farmers. 

2. Materials and methods 

2.1 Study area description 

The study site was selected based on the representativeness of smallholder farmers that have experienced 

rainfall pattern anomalies characterized by delayed onset and early cessation with poor spring rainfall 

performance but abundant summer rainfall (Gezie, 2019; Habte et al., 2021). Geshi watershed (in South-

West Ethiopia), covers an estimated area of 13,935 ha and is situated approximately between 1929’ to 

2056’N and 8157’ to 82 to 1’E (Fig. 1). The altitude of the watershed ranges between 1200 to 2670 

meters above sea level (masl). The topography is characterized by undulating terrain with slopes ranging 

from 0-50% and is surrounded by intermittent rivers.   Agroecologically, the area falls under sub moist mid-

highlands to warm moist highlands climatic zones. This diverse zone enables the sub-watersheds to produce 

different crops, fruits, vegetables, and rearing livestock (Gangadhara Bhat & Moges, 2021). It has an annual 

rainfall ranging between 1,200 to 2,200mm; while the annual maximum and minimum temperature ranges 

between 12 to 26C respectively (Ofgeha & Abshire, 2021). The distribution of rainfall is bimodal in nature 

and occurs mostly from June to mid-November (main rainy season), locally called Kiremt, and February to 

May is another season with light rain, which is locally regarded as Belg leading to two harvesting seasons 

(Gemeda et al., 2021b). Early cessation, a delayed onset, abundant rainfall, and poor belg performance 

make the watershed food insecure and forced farmers to shift to livestock production, and grow short 

maturing and lower yielding varieties.  

 

Fig. 1 Geographical location of Geshy Watershed (Source: own development) 
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Geshi watershed, which consists of seventeen micro watersheds benefiting nine Kebeles in Gimbo Woreda 

of Kaffa administrative Zone, has a total rural population of 14518 of which 7261 are males. With an 

estimated area of 13,935 ha, the major economic activity relies on agroforestry practices such as coffee 

planting, tea, cereals, and vegetables accounting for 41.9% of the total landmass. The remaining areas of 

the watershed are covered by natural forests (8.98%), degraded hillside land (2.6%), woodlot (8.48%) and 

the remaining lands are other small fragments of land (Alemu et al., 2019).  

This study utilized data collected from farm household surveys carried out between October and December 

2021 by well-trained enumerators. A multistage sampling technique was used for selecting 384 respondents. 

The sampling technique involved three stages.  The first stage involved the identification of the Woreda 

(Gimbo) where the watershed is found. The second stage followed the evaluation of the number and names 

of 11 Kebeles that are beneficiaries of the watershed. The third stage involved identifying two villages from 

each kebele purposively, which are users and non-users of the watershed. Finally, using a simple random 

sampling technique, a total of 384 households were selected from the 22 villages using Yemane, 1967, the 

formula of sampling (n=N/N(1-e)2 using a 95 percent confidence interval. The selected households were 

distributed proportionally among the three kebeles. Eventually, using a simple random sampling technique, 

individual households were selected for a face-to-face interview. Focus group discussions and key 

informant interviews were also conducted to collect qualitative information.  

2.2 Analytical framework 

Primarily, the currently available 18 CSA practices adopted by farmers: small-scale irrigation, alley 

cropping, use of organic fertilizer, use of improved crop varieties, use of efficient inorganic fertilizer, 

planting trees for windbreak and shelter for crops, use of mulching, changing planting dates, use of cover 

crops, crop rotation using legumes, improved animal husbandry, poultry farming, use of terraces, apiculture, 

feed improvement, sheep fattening, use of grasses, and use of briquettes, were identified. Then, using 

principal component analysis, these practices were further grouped into five packages of heterogeneous 

principal clusters: 1) crop management practices, 2) field management practices, 3) farm risk reduction 

practices, 4) supplementary income generation practices, and 5) soil and water conservation practices. This 

results in grouping a smaller number of highly correlated practices under one component for the ease of 

interpretation and generalization of the group (Jollife & Cadima, 2016; Wekesa et al., 2018). The rotation 

resulted in 5 principal components among a possible 19 extracted with eigenvalues >1 based on Kaiser’s 

(1958) criterion. The principal component analysis is helpful in minimizing the dimensionality of data 

without losing much information. This is relevant in determining the relationships between practices with 

regard to usage and succeeding analysis through fitting the groups to the model and drawing conclusions. 

The method is superior to a conventional grouping of technologies that could make it hard to conclude 
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about the group in conditions where the entire group is represented by few practices. Finally, a comparison 

between the impact of CSA adopters and non-adopters on food security status is computed using 

multinomial endogenous switching regression analysis.  

Using principal component analysis with varimax rotation and iteration, the practices were grouped in the 

model shown in eq. 1 

     𝑌1 = 𝑎11𝑥12 +  𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛                                        
                (1) 

         

𝑌𝑗 = 𝑎𝑗1𝑥𝑗1 +  𝑎𝑗2𝑥2 + ⋯ + 𝑎𝑗𝑛𝑥𝑛 

Where Y1,……Yj represents uncorrelated principal components, a1an indicates correlation coefficient and 

X1…...Xj signifies factors affecting the choice of a particular strategy. The identified CSA practices are 

grouped using principal component analysis and presented in Table 1. Prior to the field study, the 

identification of these practices was guided by the Ethiopian CSA roadmap document ratified by the 

Ministry of Agriculture (Eshete et al., 2020).  

The multinomial endogenous switching regression model (MNLESR) was then employed to model the 

determinants of choice and the impact of CSA practices on household food security after these practices 

are grouped.  

Table 1 Climate-smart agricultural practices identified and widely used by farmers 

S/No CSA practices Why are these practices climate-smart  Remark (Source) 

1 Small-scale irrigation Create carbon sink and improve yield frequency FAO, 2022 

2 Practicing alley cropping Diversify income sources CSA roadmap, 2020 

3 Use of organic fertilizer Reduce nitrous oxide and methane emission FAO, 2022 

4 Use of improved crop varieties Improve productivity, reduce insect and disease attack FAO, 2013 

5 Use of efficient inorganic 

fertilizer 

Improves soil productivity GGGI, 2021 

6 Planting trees for windbreak 

and shelter for crops 

Providing shed to crops, trees store large amount of CO2 

and diversify income sources 

CSA roadmap, 2020 

7 Use of mulching Reduces existing emissions CSA roadmap, 2020 

8 Changing planting dates Reduce crop failure  FAO, 2013 

9 Use of cover crops Maintain soil moisture and reduce emission FAO, 2022 

10 Crop rotation using legumes Improves soil fertility and increases crop productivity GGGI, 2021 

11 Improved animal husbandry Improves household income CSA roadmap, 2020 

12 Poultry farming Improve household income GGGI, 2021 

13 Use of terraces  Reduced erosion and soil detachment  CSA roadmap, 2020 

14 Apiculture  Improve household income, pollination FAO, 2013 

15 Feed improvement Improved livestock productivity CSA roadmap, 2020 

16 Sheep fattening  Improve household income FAO, 2913 

17 Use of grass strip Feed for animals, soil and water conservation FAO, 2013 

18 Use of briquettes  Energy-saving, reducing deforestation, mitigation role GGGI, 2021 
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Household food security status was computed using per capita annual food expenditure, Household Food 

Insecurity Access Scale (HFIAS), and Food Consumption Score (FCS) for measuring availability, access, 

and utilization dimensions respectively.  

Smallholder farm households were assumed to face a choice of nine mutually exclusive 

packages/combinations for responses to changes in average rainfall and temperature (climate change) in 

the first stage. In the next stage, MNLESR econometric model was used to examine the effect of various 

CSA practices on the status of food security.  

Step 1: Multinomial adoption selection model 

At this point, the determinants of the choice of CSA packages were determined by using the multinomial 

logit model. Farm households were assumed to maximize the status of their food security Yi by making 

revenue comparisons generated by 9(M) alternative CSA packages.  The need for farmer i to make a choice 

over any strategy j over other alternatives K is that Yij > Yik, K  J, where j gives higher expected food 

security than any other technology. 𝑌𝑖𝑗
∗  is the latent variable representing the level of expected food security 

that can be affected by the observed household, plot features, climate shocks, and unobserved characteristics 

as follows: 

      𝑌𝑖𝑗
∗ = 𝑋𝑖𝛽𝑗  +  𝜀𝑖𝑗                                                                      (2) 

Where Xi denotes the observed exogenous variables (household and plot features), while the unobserved 

features are justified by the error term ij. Xi is the covariate vector, which is assumed to be uncorrelated 

with the idiosyncratic unobserved stochastic component ij, that is E(ij|Xi) = 0, in that error terms ij are 

considered to be identically independent and Gumbel distributed, which is, under the independent irrelevant 

alternatives (IIA) hypothesis (Fosgerau et al., 2020). The probability of choosing j(Pij) is given by the 

multinomial logit model (Hoffman & Duncan, 1988) following the selection model as follows:  

     𝑃𝑖 =  𝑝(𝜀𝑖𝑗 < 0|𝑥𝑖) =  
𝑒𝑥𝑝 (𝑋𝑖𝛽𝑖)

∑ 𝑒𝑥𝑝 (𝑋𝑖𝛽𝑘)
𝐽
𝐾=0

                                    (3)  

Step 2: Multinomial endogenous switching regression model 

The impact of each response package on food security was examined using endogenous switching 

regression (ESR) by applying Bourguignon et al. (2007) selection bias correction model. A total of 9 

regimes have been faced by farm households with regime j = 1 being the reference non-responsive category. 

For each possible regime, the food security status equation is defined as: 
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Regime 1 𝑄𝑖1 =  𝑍𝑖𝛼1 +  𝜇𝑖1  𝑖𝑓 𝑖 = 1 

                                                       ⁝                ⁝                (4) 

       Regime j   𝑄𝑖𝑗 =  𝑍𝑖𝛼𝑗 + 𝜇𝑖𝑗   𝑖𝑓 𝑖 = 𝑗 

Where Qij’s denote the status of food security, Zi represents a list of exogenous variables (household, plot, 

location, climate shocks, and institutional variables), and the ith farmer in regime j and the distribution of 

error terms μij’s are with E(μij|x, z) = 0 and var (μij|x, z) = σj
2. The term Qij is observed if, and only if, CSA 

technology is used, which happens when 𝑌𝑖𝑗
∗  > 

𝑚𝑎𝑥
𝐾≠1

 (Yik); if (3) and (4) error terms are not independent, OLS 

estimates were biased for eq. (4). A αj consistent estimation needs inclusion of alternative choices selection 

correction terms in eq. (3). The following linearity assumption is considered in MNLSR: E(μij|i1….ij) = 

σj∑ 𝑟𝑗(𝜀𝑖𝑘 − 𝐸(𝜀𝑖𝑘))
𝑗
𝑘≠𝑗 . The correlation between error terms in (3) and (4) was zero by construction.  

Eq. (3) can be expressed by using the above assumption as follows: 

Regime 1 𝑄𝑖1 =  𝑍𝑖𝛼1 +  𝜎11 + 𝜔𝑖1  𝑖𝑓 𝑖 = 1 

                                                       ⁝                ⁝                (5) 

            Regime j   𝑄𝑖𝑗 =  𝑍𝑖𝛼𝑗 +  𝜎𝑗𝑗 + 𝜔𝑖𝑗  𝑖𝑓 𝑖 = 𝑗 

Where σj is the covariance between μ’s and ’s, while j is the inverse Mills ratio calculated from the 

estimated probability in Eq. (5) as: 

𝑗 =  ∑ 𝜌𝑗
𝑗
𝑚≠𝑗 [

𝑃𝑖𝑘𝐼𝑛(𝑃𝑖𝑘)

1−𝑃𝑖𝑘
+ 𝐼𝑛(𝑝𝑖𝑗)]                                             (6) 

Where  signifies the correlation coefficient of μ’s and ’s, whereas ij are error terms with zero expected 

value. In the earlier expression of the multinomial choice setting, there were one j – 1 selection correction 

terms for each CSA alternative practice. To account for the heteroscedasticity arising from regressors 

generated given by t, the standard errors in eq. (5) were bootstrapped.  

Average treatment effects estimation 

At this stage, a counterfactual analysis was conducted to examine average treatment effects (ATT) by 

making a comparison of the expected outcomes of adopters with and without the adoption of a certain CSA 

technology. In the counterfactual and actual scenarios, ATT was computed as follows (Liang et al., 2021): 

Status of food security with adoption/usage 

𝐸(𝑄𝑖2|𝑖 = 2) = 𝑧𝑖𝛼2 + 𝜎22                                                     (7a) 

𝐸(𝑄𝑖𝑗|𝑖 = 𝑗) = 𝑧𝑖𝛼𝑗 +  𝜎𝑖𝑗                                                     (7b) 
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Status of food security without adoption (counterfactual) 

𝐸(𝑄𝑖1|𝑖 = 2) = 𝑧𝑖𝛼1 +  𝜎12                                                     (8a) 

𝐸(𝑄𝑖1|𝑖 = 𝑗) = 𝑧𝑖𝛼1 +  𝜎1𝑗                                                     (8b) 

The difference between 7a and 8a defines ATT, which is given by: 

𝐴𝑇𝑇 =  𝐸(𝑄𝑖2|𝑖 = 2) −  𝐸(𝑄𝑖1|𝑖 = 2) 

              =   𝑧𝑖(𝛼2𝛼1) +  2(𝜌2 - 𝜌1)            (9) 

It shows the expected change in mean food security status of adopters, if adopters and non-adopters have 

the same features of return, for example, while j is the selection term that considers all the differences in 

potential effects of unobserved variables if adopters had the same features as non-adopters. 

Table 2 presents variables employed in econometric analysis, which was derived from reviewing past 

studies (HABTEWOLD, 2021; Hasan et al., 2018; Lipper et al., 2014; Wekesa et al., 2018).  

2.3 Food security measurement 

The status of household food security was measured using per capita annual food expenditure, Household 

Food Insecurity Access Scale (HFIAS), and Household Food Consumption Score (HFCS), which were used 

as proxies for the food security of farmers. The per capita annual food expenditure is an indicator that 

approximates calorie consumption based on the total amount of food acquisition or consumption by the 

household. By attaching standard nutritional value weights in the index of the food groups, the indicator 

constructs the conversion of the food acquisition or consumption by the household into dietary energy 

(K/cals) by matching individual foods with the food consumption table. The amount of calories is calculated 

by measuring the portion consumed or purchased, divided by the total household members (Nicholson et 

al., 2021). If the data is collected over a number of days, the computation needs to be divided by the number 

of collection days in order to generate the number of calories per person per day. HFIAS was developed by 

the USAID-funded Food and Nutritional Technical Assistance II Project (FANTA) and measures the access 

dimension. It contains nine occurrence questions with severity based on four levels of questions on a recall 

period of the previous month. A range of questions (0 = not at all, 1 = rarely, 2 = sometimes, 3 = often) are 

represented by the four severity questions. The highest household score is 27, indicating severe food 

insecurity; the lowest score is 0, which shows that the household is food secure (Otekunrin et al., 2021). 

The HFCS was developed by World Food Programme (WFP) and measures the utilization dimension. It 

incorporates the frequency of consumption of diets over a seven-day period and weighs according to the 

relative nutritional value of the food group consumed. For instance, nutritionally dense foods such as animal 

products are given higher weights than foods such as tubers that contain lesser nutritionally dense foods. 
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According to this score, household food consumption can be further grouped into three classifications: poor, 

borderline, or acceptable (Douyon et al., 2022; Wiesmann et al., 2009).  

Table 2 Variables employed in econometric analysis 

Variable Description Measurement Mean SD 

FOODSEC Household food security status Per capita annual food 

expenditure 

0.98 0.21 

  Food Insecurity Access Scale 16.21 7.13 

  Food Consumption Score 65.71 12.64 

AGE Age in years of head of the household Continuous  39.43 17.41 

GENDER Gender of the head of the household Dummy = 1 if male, 0 = female 0.65 - 

EDUC Years of education of the head of the household Discrete 6.00 2.13 

H/SIZE Number of household members Discrete 5.34 3.14 

OFF-FARM Off-farm employment participation Dummy = 1 if yes, 0 = otherwise 0.31 - 

ASSETS Productive farm assets values Continuous  67,144.12 69,154.32 

LAND Farm size owned in acres Continuous 1.51 2.34 

TERRAIN Terrain of the land 1= sloppy, 0 = otherwise 0.72 - 

S/FERTILITY Soil fertility status 1 = poor, 2 = medium, 3 = fertile 2.12 - 

EROSION Soil erosion severity 1 = severe, 2 = moderate, 3 = low 2.77 - 

FLOOD Experience of flooding in the past 5 years Dummy = 1 if yes, 0 = otherwise 0.67 - 

RAINS Experience of insufficient rainfall in the past 5 years Dummy = 1 if yes, 0 = otherwise 0.89 - 

H/STRMS Experience of hailstorms in the past 5 years Dummy = 1 if yes, 0 = otherwise 0.43 - 

DISTNCE Walking time in minutes to input and output market Continuous 57.31 25.43 

EXTN Number of contacts with extension agents annually  Discrete  16.51 4.52 

GRPMSHIP If the farm household is a member of a farm-related 

association 

Dummy = 1 if yes, 0 = otherwise 0.54 - 

CREDIT Whether credit is received by the household Dummy = 1 if yes, 0 = otherwise 0.72 - 

 

3. Results and discussion 

3.1 Principal component analysis 

Table 3 comprises principal components (PCs) and linear combination coefficients known as loadings. 

Inspection of Table 3 visually reveals that the total variability of the data set is 85% explained by the five 

PCs. The PCA results explained the data highly and the results presented in table 3 are considered a good 

fit. The first component explained 37.2% variance and it is correlated with the use of efficient inorganic 

fertilizer, changing planting date, crop rotation using legumes, and use of organic fertilizer all with positive 

effects (factor loadings). Accordingly, this component was named crop management practices.  

Table 3 Effects of the five components of CSA compositions 

Strategies Comp1 Comp2 Comp3 Comp4 Comp5 Communality  

Irrigation 0.6347 0.5997 0.4992 0.6631 0.2741 0.7070 

Planting crops on tree lands 0.5327 0.3217 0.2271 0.1173 -0.3325 0.6170 

Use of organic fertilizer 0.2178 0.6184 0.6112 0.3312 0.1192 0.6915 

Use of improved crop varieties 0.5718 -0.2998 0.5513 0.5538 -0.2174 0.6614 

Use of efficient inorganic fertilizer 0.5561 0.2117 0.4828 0.2217 -0.3715 0.6618 

Planting trees on croplands 0.3691 -0.2511 0.1735 0.3721 0.2721 0.6516 
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Use of mulching 0.1998 0.5771 0.5122 -0.3351 0.2193 0.6113 

Changing planting dates 0.3978 0.4112 0.2172 -0.2935 -0.4271 0.6925 

Use of cover crops 0.2975 0.5523 -0.2314 -0.4152 0.2221 0.6115 

Crop rotation using legumes 0.4173 0.1192 -0.3142 -0.1184 -0.4416 0.7110 

Cattle fattening  0.2756 -0.5532 0.3352 0.6824 -0.4618 0.6001 

Poultry farming 0.3291 -0.4992 0.2741 0.5962 -0.6144 0.6591 

Making terraces  0.2531 0.1184 -0.4472 -0.4997 0.7142 0.6481 

Apiculture  0.4438 -0.3351 0.3624 0.4478 -0.5921 0.6284 

Feed improvement 0.1962 -0.4463 -0.1178 -0.3182 -0.3726 0.6002 

Sheep fattening  0.2749 -0.5172 0.2913 0.3824 -0.4426 0.6131 

Planting grasses 0.2111 -0.1172 -0.6812 -0.6172 0.3927 0.6005 

Use of briquettes  0.1175 -0.3247 -0.4711 -0.3153 -0.2226 0.6317 

Eigenvalues  4.8153 3.116 1.9925 2.2241 1.1420  

Eigenvalues (%) contribution 37.2113 25.1711 10.6327 6.4118 5.2461  

Cumulative (%) 37.2113 62.3824 73.0151 79.4269 84.673  

Principal component 1, 2, 3, 4, and 5 accounted for 37.2, 25.17, 10.63, 6.4, and 5.2% variances respectively. 

This signifies the first five components have great importance in explaining variance in the data set. The 

second PC was related to the use of cover crops, planting crops on tree lands, planting trees on croplands, 

use of mulching, and use of briquettes where they all have positive loadings too. Component 2 was termed 

as field management and climate change mitigation practices. The third PC comprised feed improvement, 

use of improved crop varieties, and use of cover crops, irrigation with corresponding positive effects, which 

are collectively called farm risk reduction activities. The fourth PC consists of the use of fattening, 

apiculture, and poultry farming which had similar positive effects. These practices were together known as 

supplementary income generation practices. Finally, the last PC was related to planting grasses and making 

terraces where they have negative loadings. PC 5 was collectively called soil and water conservation 

practices. 

The communality column indicates the total size of variance of each variable retained in the five 

components (Alavi et al., 2020) described that all items in PCs need to have communalities of over 0.60 or 

0.7 average communality for small samples precisely below 50 to justifiably say a PCA is performed. With 

a 384-sample size, Table 3 presented a variance greater than 60% in the PCs and can be considered as 

meeting the minimum criteria. For PCs interpretation, variables with high communalities and high factor 

loadings were justified from varimax rotation (Bartholomew, 2010; Jollife & Cadima, 2016). [ 

The descriptive statistics of the composition of each component (climate-smart practices) are presented in 

Table 4. The most commonly used component used was crop management practices with 92.34% of 

smallholder farmers using a minimum of one unit of this component. The component consists of practices 

such as the use of efficient fertilizer, changing planting dates, crop rotation using legumes, and the use of 
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organic fertilizer. The second component used greatly was field management and climate change 

mitigation.  

Table 4 List of climate-smart agricultural strategies  

Group Users’ 

percentage 

Components 

Crop management practices  

 

92.34% Use of efficient inorganic fertilizer 

Changing planting date 

Crop rotation using legumes 

Use of organic fertilizer 

Field management and climate change mitigation practices 89.01% Use of cover crops 

  Alley cropping 

  Tree planting for windbreak and 

shelter for crops 

  Use of mulching 

  Use of briquettes 

Farm risk reduction practices  81.21% Feed improvement 

  Use of improved crop varieties 

  Use of cover crops 

  Small-scale irrigation 

Supplementary income generation practices 42.24% Improved animal husbandry 

  Apiculture 

  Poultry farming 

Soil and water conservation practices 11.2% Use of grass strip 

  Use of terraces 

practices used by 89.01%. This component comprised the use of cover crops, alley cropping, planting trees 

for windbreak and shelter for crops, use of mulching, and use of briquettes. The third component widely 

used by farmers was farm risk reduction activities which constituted 81.21% of responses from farmers that 

include practices such as feed improvement, use of improved crop varieties, use of cover crops, and small-

scale irrigation.  

Supplementary income generation practices were only used by 42.24% of farmers. The practices included 

under this component are improved animal husbandry, apiculture, and poultry farming. Finally, the least 

used component consisted of soil and water conservation practices, which include the use of grass strips 

and making terraces. This component was used by only 11.2% of farmers.  

3.2 Econometric findings 

The impact of CSA packages on food security is well understood following the computation of the 

determinants of the choice of CSA packages. The adoption of CSA practices in a wide range of 

combinations has implications on the status of food security smallholder households. With the set of 
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available packages given, understanding the factors deriving an individual to choose a specific package is 

crucial for policy direction (Wekesa et al., 2018).  

The various combinations of packages are presented in Table 5 whereby 8 out of 25 possible combinations 

were used by farmers. A relatively small proportion of farmers (9.37%) were non-adopters/non-users of 

any CSA package. About 3.92% of farmers used the C0F0R1I1S1 package. This package is composed of risk 

reduction practices, income-generating practices, and soil and water conservation practices. Another 6.26% 

used the C1F1R1I0S1 package that comprised crop management practices, field management and climate 

change mitigation practices, risk reduction practices, and soil and water conservation practices. Further, 

6.52% of farmers used C1F0R0I0S0 packages that consisted of crop management practices only. Another 

7.29% of farmers used C1F0R1I0S1 packages that contained crop management practices, risk reduction 

practices, and soil and water conservation practices. About 8.34% of farmers used the C1F0R1I1S1 package 

which contained crop management practices, risk reduction practices, income-generating practices, and soil 

and water conservation practices. Again, 9.13% used the C1F1R1I0S0 package that comprised practices of 

crop management, field management, and risk reduction. Approximately 10.16% used all the five packages 

(C1F1R1I1S1) together. 

The largest proportion of farmers (39.01%) used the C1F0R1I1S0 package that contained crop management 

activities, farm risk reduction practices, and income regeneration practices. This indicates the efforts of 

many subsistence farmers to achieve food security are based on irrigation-based crop management practices 

despite anomalies in rainfall patterns. The observation is similar to the findings of Hasan et al. (2018) that 

recommended that farmers in the region undertake such self-initiated responsive strategies for survival 

amidst adverse climate change impacts. A careful observation of Table 5 shows that all users of CSA 

practices (66.6% of all farmers) used a pack of practices with the inclusion of crop management practices. 

This observation indicates the need of the majority of farmers to meet their fundamental crop production 

for food production and this is in conformity with the study conducted by Wekesa et al. (2018).  

3.3 Determinants of specific CSA packages choice 

The factors that influence the choice of CSA packages are described in this section. It is then followed by 

quantification of the effect of package use on the status of farm household food security in the last stage. 

This was generated using the multinomial endogenous switching regression (MNLESR) model, which is a 

model of two-stage regression analysis. The first stage of MNLESR entails the determination of the choice 

of CSA strategy using the multinomial logit model. This is a crucial step as it guides the appropriate 

intervention to enhance the adoption of CSA packages. The next stage determines the impact of CSA 

packages use on household food security. The marginal effects from the MNL model that measured the 
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probability of the expected change of a particular CSA strategy choice being made with respect to a unit 

change in an independent variable, which is presented in Table 6.  

Non-adopters of all practices (C1F1R1I1S1) were the base category compared to the other 9 packages (refer 

to table 5 for the packages) used by smallholder farmers. The result presented nine sets of parameter 

estimates, one for each are strategies mutually exclusive. The Wald test is rejected for all regression 

coefficients are jointly equal to zero X2(500) = 552.41; p = 0.000. Thus, the results indicate that across 

the alternative packages, the estimated coefficients differ substantially.  

Table 5 Combination of CSA strategy specifications to form the packages 

Choice (j) Binary 

quadruplicate 

C = Crop 

management 

F = Field 

management 

R = Risk 

reduction 

I = Income 

generation 

S = Soil & water 

conservation 

Frequency Percentage 

C0 C1 F0 F1 R0 R1 I0 I1 S0 S1 

1 C0F0R0I0S0           36.00 9.37 

2 C0F0R0I0S1           0.00 0.00 

3 C0F0R0I1S1           0.00 0.00 

4 C0F0R1I1S1           15.00 3.92 

5 C0F1R1I1S1           0.00 0.00 

6 C1F1R1I1S1           39.00 10.16 

7 C1F1R1I1S0           0.00 0.00 

8 C1F1R1I0S0           35.00 9.13 

9 C1F1R0I0S0           0.00 0.00 

10 C1F0R0I0S0           25.00 6.52 

11 C0F1R0I1S0           0.00 0.00 

12 C1F0R1I0S1           28.00 7.29 

13 C1F0R0I0S1           0.00 0.00 

14 C1F0R0I1S1           0.00 0.00 

15 C0F1R0I0S0           0.00 0.00 

16 C1F1R0I0S1           0.00 0.00 

17 C1F0R1I1S1           32.00 8.34 

18 C0F1R1I1S0           0.00 0.00 

19 C0F0R1I0S0           0.00 0.00 

20 C0F1R0I0S1           0.00 0.00 

21 C1F0R1I1S0           150.00 39.01 

22 C0F1R1I0S1           0.00 0.00 

23 C0F1R0I0S0           0.00 0.00 

24 C1F1R0I1S1           0.00 0.00 

25 C1F1R1I0S1           24.00 6.26 

Total            384 100 

The possible CSA packages are represented by the binary quadruplicate. In the quadruplicate, each element is a binary variable for a CSA 

combination of crop management practices(C), field management and climate change mitigation practices(F), farm risk reduction practices (R), 
supplementary income generation practices (I), and soil and water conservation practices (S). Subscript 1 = adoption and 0 = otherwise 

The age of the head of the household was negatively associated with the usage of the C1F0R0I0S0 package 

and positively associated with C1F0R1I0S0 at 5% and 10% significant levels, respectively. An increase in the 

age of the head of the household by one year minimizes the likelihood of using the C1F0R0I0S0 package by 

0.18% while enhancing the likelihood of using the C1F0R1I0S0 package by 0.17%. This implies that as age 

mounts up, farmers shift from smaller packages of practices to larger ones and this is in conformity with 

the study conducted by (Wekesa et al., 2018). Older farmers may be afraid of risks associated with climate 

change and decide to diversify their income sources from their past experiences and thus accumulate many 

packages. Contrary, Ali & Erenstein (2017) documented that old age is negatively associated with the 
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adoption of climate change adaptation strategies, justifying that agriculture is a labor-intensive task that 

demands a healthy, risk-bearing, and energetic farmer. Recent innovations may not reach older farmers as 

well 

With respect to household gender, male-headed households were 3.1% more likely to use the C1F1R1I1S1 

package that contains all the CSA practices only at a 5% level of significance as relative to C0F0R0I0S0 (non-

adopters of all practices) as compared to females. Women are generally resources and time-constrained. 

This may justify the inverse relationship with CSA practices usage under this study. A study by Autio et al. 

(2021) reported that one of the major barriers to CSA adoption is gender (females) stemming from gender 

roles customarily. Additionally, they described that access to resources such as inputs, land extension 

service, education, and credit to women is less than men where all of which can have important 

contributions to CSA transition. For female-headed households, land ownership presents another difficulty 

in CSA adoption.  

The educational level of the household head negatively affected C1F1R1I0S0 which comprises of crop 

management practices, field management and climate change mitigation practices, and risk reduction 

practices. The more educational years reduced the probability of using this package by a 5% level of 

significance. It might be due to the reason that this package never guarantees their resilience from prevailing 

climate change risks and opt-out this package as it doesn’t fill this gap. A study by Kangogo et al. (2021) 

argues that an increased level of education tends to establish the ability and innovativeness to monitor risks 

by farmers for proper farm adjustments.  

There exists a positive and significant relationship between the value of productive assets of farms (a wealth 

proxy) and CSA usage. Farmers endowed with resources (farmers with high value of productive farm 

assets) were more likely to use more packages C1F1R1I0S0 and C1F1R1I0S1 as opposed to non-adopters of 

any package. For resource-endowed farmers, the probability of using these packages increased by 0.15% 

and 6.1%, respectively.  It is likely that wealthier farmers have the capacity to buy water-pump generators, 

improved varieties, and inorganic fertilizers and adopt these CSA practices that are unaffordable to buy by 

ordinary smallholder farmers. Besides, these assets improve the ability to absorb the risks related to failure 

and the length of time in realizing CSAs. This is in line with the work of van Wijk et al. (2020) that justifies 

the bigger size of farms increases the benefits of economies of farmers’ scales and also furnish a way of 

product diversification. Farmers of only one farm package practice (C1F0R0I0S0) that only contains crop 

management practices were less likely to implement the packages as farm size increased. The probable 

explanation would be these farmers prefer to rent out their large-sized farms for other users rather than 

practicing agriculture since the small package may not provide reasonable production in the face of harsh 

weather conditions and this is an existing experience by smallholder farmers in South Western Ethiopia 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 6 Estimates of marginal effects for determinants of CSA packages by MNL 

Variables C1F0R0I0S0 
Dy/dx 

C1F0R1I1S0

Dy/dx 

C0F0R1I1S1 
Dy/dx 

C1F1R1I0S0

Dy/dx 

C1F0R1I0S1

Dy/dx 

C1F0R1I1S1

Dy/dx 

C1F1R1I0S1 

Dy/dx 

C1F1R1I1S1 

Dy/dx 

Socioeconomic factors         
Age of HH -0.0018* 0.0006 0.0014 -0.0017 0.0017**     0.0015 0.0018 0.0000 

Gender of HH -0.0343 0.0054 0.0430 -0.0293 -0.0039   0.0040 -0.0041   0.0312** 

Education years of HH 0.0014 0.0016 0.0022 -0.0305** 0.0018 0.0031 0.0018 0.0000 

Size of HH 0.0077 -0.0005 -0.0030 -0.0328 0.0049 0.0002 0.0047 0.0003 

Off-farm employment participation -0.0314 0.0011 0.0523 -0.0429 -0.0217 -0.0261 -0.0156 0.0013 

Farm size -0.0269*** -0.0103 -0.01768** -0.0216 0.0220*   0.0315*    0.0210***   0.0015** 

Farm assets     0.0042 0.0008   -0.0054  0.0015***   0.0015    0.0003  0.0611***    0.0411* 

Characteristics of farm         

Perception of land terrain -0.0003 0.0066 -0.0213 0.0885 -0.0187 0.0051 -0.0166 0.0022 

Perception of the severity of erosion -0.0206 -0.0431** 0.0179 -0.0362 -0.0252**    0.0189 -0.0523*** 0.0006 

Perception of soil fertility -0.0072 -0.0003 0.0206 0.1064*** -0.0215 -0.0023 -0.0152*** 0.0005 

Incidences          

Frequent floods 0.0371 -0.0277 -0.0340 0.0301 0.0220* -0.0193 0.0213 0.0004 

Hailstorms 0.0269 0.0051* -0.0047 -0.0171 0.0284 0.0003 0.0182 0.0005 

Insufficient rains -0.0032 0.0007 -0.0186 0.517 -0.0422 0.0062 -0.0411 0.0003 

Institutional factors         

Distance from farm to market 0.0001 -0.0002 -0.0006* 0.0022 -0.0005** -0.0198 -0.0006** 0.0001 

Membership in farmer’s 

associations 

0.0316 0.0265 -0.0215 0.1779** 0.0332 0.0058 0.0332** 0.0000 

Contacts with extension agents -0.0052 0.0031 0.0081 -0.0317*** 0.0051 0.0018 0.0047** 0.0003* 

Access to credit -0.0482* -0.0033 -0.0074 -0.1493** 0.0019 0.0427 0.0031*** 0.0002 

Number of observations = 384; Wald X2 (120) = 553.51, p = 0.000 
C0F0R0I0S0 is the reference category base in the MNL; HH is the household head 

 Significant at 5% level 

 Significant at 10% level 

 Significant at 1% level 

Farmers’ perception of soil erosion was negatively associated with the use of these packages: C1F0R1I1S0, 

C1F0R1I0S1, and C1F1R1I0S1. The probability of using these packages declined by 4.3%, 2.5%, and 5.2%, 

respectively for farmers that considered their plots severely eroded. It looks like farmers are highly 

encouraged to undertake CSA practices on less eroded farms and vice versa. Practically, these farmers were 

not responsive to countering severe erosion impacts but were discouraged by severe erosion in 

implementing CSA technologies. A similar study conducted by Ali & Erenstein (2017) indicated a positive 

relationship with many soil conservation practices adoption with the consent that farmers were responsive 

to effects of soil degradation brought by soil erosion.  

Farmers’ perception of farmland soil fertility had a positive and significant influence on the usage of the 

C1F1R1I0S0 package and a negative impact on the use of C1F1R1I0S1. The use of C1F1R1I0S0 and C1F1R1I0S1 

by farmers is likely to increase by 10.6% and get reduced by 1.5% respectively, for farmers that consider 

their farmland is relatively fertile. This leads to the understanding that farmers who believe their farms are 
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fertile likely opt to implement small package C1F1R1I0S0, which is against the non-use of any package. This 

is a lean package that has insignificant soil replenishing effect. But those farmers who believe their farmland 

is less fertile preferably implement a C1F1R1I0S1 package with more CSA practices included that play a soil 

fertility improvement role. Hasan et al. (2018) reported that the propensity for sustainable agricultural 

practices adoption such as improved maize is expected to be higher on plots with fertile soils because most 

improved varieties of maize demand expensive inorganic fertilizer application.  

The choice of CSA packages is influenced by factors related to past experiences with extreme weather 

conditions. For example, frequent flood experiences in the past were more likely to use the C1F0R1I0S1 

package. The probability of using this package was increased by 2.2% for farmers with frequent flood 

experiences in the past. It is more likely that farmers opt to implement flood-related shocks response 

strategy to reduce soil degradation and maintain the fertility of the soil. On the other hand, Aryal et al. 

(2020) argued that climate adaptation technologies adoption such as using drought-resistant varieties and 

crop rotation is negatively and significantly influenced by adverse conditions induced by flooding such as 

waterlogging and frost stress.  

Previous experience with hailstorms was also positively related to the use of C1F0R1I1S0 package. It was 

indicated that the likelihood of using this package improved by 0.51% for farmers who had past hailstorm 

experiences. Likewise, these farmers could be implementing a strategy responsive to this problem including 

farm risk reduction and supplementary income generating practices. A study conducted by Hussain et al. 

(2020) contrarily reported that frequent hailstorms were the major source of production risks associated 

with climate change that discouraged production technologies adoption posing a threat to stable yield.  

The use of CSA practices was negatively influenced by distance (measured by walking time) to the input-

output market. An increase in the time elapsed to reach the market by 1 min declined the probability of 

using C0F0R1I1S1, C1F0R1I0S1, and C1F1R1I0S1 by 0.06, 0.05, and 0.06%, respectively. The transaction costs 

associated with input purchase and output sale are increased as the distance to the market gets longer. 

Chavas et al. (2019) presented that distance can affect the accessibility of new technologies, credit 

institutions, and information, apart from access to the market, and thus confirms the negative association.  

Farmers’ membership in various associations/groups had a positive and significant impact on C1F1R1I0S0 

and C1F1R1I0S1. With respect to the non-adopters, the probability of using these packages, as a result of 

being a member of farmers’ associations, has increased by 17.7% and 3.3%, respectively. Farmer’s 

associations are crucial channels through which extension agents and other service providers use to get 

farmers. In addition, field management practices such as terrace construction could be possibly achieved in 
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mass mobilization using these channels as one option. Further, members of the associations exchange ideas, 

get connections for research output dissemination and handle farm demonstrations through this avenue. 

Kumar et al. (2020) reported that learning from pear experiences enhances the probability of adoption of 

technologies due to the reason that farmers put trust in more practical experiences shown by their peers 

since they share much in common.  

The frequent contact with extension agents positively influenced the use of C1F1R1I0S1 and C1F1R1I1S1 but 

negatively affected the use of C1F1R1I0S0 packages. Additional contact with extension agents annually 

increased the probability of using C1F1R1I0S1 and C1F1R1I1S1 by 0.47 and 0.03%, respectively but reduced 

the probability of using C1F1R1I0S0 by 3.1%. This suggests that the adoption of larger packages by farmers 

is largely influenced by extension agents’ contacts with farmers. It also highlights that the issue of climate 

change was included in information dissemination that promoted the use of many packages. Nevertheless, 

on the other hand, a reduced probability of using C1F1R1I0S0 implies that extension agents’ services had 

mixed roles. It looks evident that farmers using C1F1R1I0S0 package with only crop, field management 

practices, and risk reduction practices only was skeptical about the information provided by the extension 

agents that it truly improves production, and decide to opt-out using any other package. This is consistent 

with the findings of the study in Kenya by Emmanuel et al. (2016) that described the involvement of 

extension agents in many more activities such as administering credit and delivering inputs, which pose 

questions of their skills impacting trust and finally declining implementation.  

Access to credit had a positive and significant impact on the use of C1F1R1I0S1 but a negative impact on the 

use of C1F0R0I0S0 and C1F1R1I0S0. The result depicted that farmers that received credit in the previous 

farming season were 0.31% more likely to use C1F1R1I0S1. Access to credit enables farmers to meet costs 

involved in CSA technology implementation, especially high-priced ones such as the use of irrigation and 

improved livestock breeds present in this package containing a large package. Likewise, (Acclassato 

Houensou et al., 2021) discussed credit constraints that affect investment in inorganic fertilizer and improve 

seed negatively, explaining that credit-constrained farmers are less likely to adopt CSA practices that 

require cash expenditures. Credit access reduced the probability of using C1F0R0I0S0 and C1F1R1I0S0 

packages by 4.8% by 14.9%, respectively. A negative influence of access to credit to the use of C1F0R0I0S0 

and C1F1R1I0S0 may suggest that these farmers prefer the credit access to be diverted to non-farm expenses 

such as medical and school fees, thus use of any package is unnecessary.  

3.4 Average treatment effects for the adoption of CSA packages 

Once the drivers of choice of CSA packages are determined in the first stage, the effect of treatments was 

determined in the second stage to evaluate the effect of these packages’ use on household food security. 
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The ordinary least squares regression of per capita annual food expenditure, Household Food Insecurity 

Access Scale (HFIAS), and Household Food Consumption Score (HFCS) of households were estimated for 

every combination of CSA practices, considering the selection bias correction terms from the primary stage. 

Treatment effects, which are the most important part of this stage are discussed. 

Appendices 1 and 2 present the summary of questions and food categories for HFIAS and HFCS. The per 

capita annual food expenditure measured the amount of dietary energy in (K/cals) through converting the 

food acquisition or consumption by matching individual foods with the food consumption table. Thus, a 

high per capita annual food expenditure results in higher dietary energy content, and correspondingly the 

level of food security is understood as food secure. HFIAS, with its nine occurrence questions, finally 

resulted in different severity levels (0-27) of food insecurity. The severity levels approaching zero is 

regarded as food secure, a value approaching 27 corresponds to severely food insecure and values ranging 

from 9 to 16 are regarded as moderately food insecure. Further, HFCS, with a frequency of consumption 

of diets over a seven-day period gives higher weights for nutritionally dense foods with a score classified 

as acceptable for nutritionally dense foods such as animal products, and other low dense foods such as 

tubers are regarded as poor and other meal types fall under moderate classification. Generally, a high 

calorific value, lower severity levels, and acceptable food consumption score are considered food secure 

and vice versa.  

Table 7 presents the average adoption effects in terms of per capita annual food expenditure, HFIAS and 

HFCS under actual and counterfactual conditions. In Table 7, X1 represents the treated category (adopters) 

and X2 represents the untreated (non-adopters), 1 denotes treated characteristics (adoption state) and 2 

representing untreated characteristics (non-adoption state).  The difference in food security status as a result 

of a specified package is regarded as the level effect. The result of the difference between treated with 

treatment features and untreated with untreated features (1X1) – (2X2) is termed the impact. Except for 

users of C1F0R1I0S1, C1F1R1I1S0, and C1F1R1I1S1, all the rest employing other packages would be better off 

in the counterfactual scenarios (non-adopters) signifying the availability other better possibilities. Apart 

from C1F0R1I1S1, all other packages that included farm risk reductions and supplementary income 

generation practices had a positive impact on household welfare. This implies that farmers need to manage 

their farm risks and diversify income-generating practices to improve the food security status in the face of 

uncertain climate change events.  
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Table 7 Impact of use and non-use of CSA packages on food security estimated under the three parameters by ESR 

 

Package 

 Per capita annual food expenditure 

(PCFE) 

HFIAS HFCS 

Treated 

(1) 

Untreated 

(2) 

Impact/ 

returns 

Treated 

(1) 

Untreated 

(2) 

Impact/ 

returns 

Treated 

(1) 

Untreated 

(2) 

Impact/ 

returns 

C1F0R0I0S0 Treated(X1) 0.54(2.10) 0.59(0.74) -0.04 21.0(0.13) 24.1(0.34) -3.14 45.2(1.54) 46.4(0.98 -0.42 

Untreated(X2) 0.59(1.92) 0.64(0.48) -0.05 23.14(0.71) 24.51(0.49) -1.37 53.1(2.14) 63.2(0.75) -13.44 

Level effects -0.05 -0.15* -0.09 -0.01 -0.16 -5.16 -7.90 -16.8*** -16.85 

C1F0R1I1S0 Treated 0.98(1.96) 0.72(3.17) 0.26 16.1(0.22) 16.9(0.42) -0.73 66.7(7,56) 57.9(2.62) 8.17 

Untreated 0.62(3.14) 0.81(0.17) -0.19 18.2(0.09) 18.6(0.11) 3.12 64.4(3.94) 64.7(0.81) -0.47 

Level effects 0.36 -0.09 -0.71 -2.10 -2.3 1.91 2.30 -6.8*** 2.7 

C0F0R1I1S1 Treated 0.35(3.4) 0.31(1.8) 0.04 20.1(0.51) 21.4(0.66) -0.25 62.1(3.45) 59.2(0.94) -17.26 

Untreated 0.29(1.9) 0.27(0.8) 0.02 21.4(0.07) 22.3(0.07) -0.19 58.1(2.42) 66.4(1.02) -5.36 

Level effects 0.06 0.04 0.06 -1.3 -2.5 -0.12 4.00 -7.2 -2.81 

C1F1R1I0S0 Treated 1.10(0.87) 0.99(0.12) 0.11 13.2(0.06) 12.9(0.12) 0.46 56.8(1.08) 66.7(1.04) -11.04 

Untreated 1.21(0.99) 1.13(0.04) 0.04 11.1(0.07) 10.7(0.07) 0.12 59.9(0.99) 69.17(0.97) -8.12 

Level effects -0.11 -0.14 0.15 2.1 2.2 0.58 -3.20** -2.4 -14.61 

C1F0R1I0S1 Treated 1.11(0.14) 1.09(1.99) 0.02 10.8(0.05) 9.1(0.09) 0.32 56.2(1.04) 64.9(1.07) -10.43 

Untreated 0.99(0.72) 0.87(2.14) 0.19 8.4(0.11) 7.8(0.13) 0.16 59.9(1.99) 69.0(0.97) -8.32 

Level effects 0.12 0.22* 0.22 1.6* 2.7* 0.48 -3.70** -4.10*** -11.51 

C1F0R1I1S1 Treated 1.35(1.9) 1.28(2.5) 0.07 5.16(0.26) 6.12(0.07) 1.12 64.0(2.55) 68.1(0.90) 2.12 

Untreated 1.22(2.1) 1.18(0.5) 0.04 7.93(0.43) 8.08(0.19) 1.56 63.8(2.01) 64.2(0.87) 1.94 

Level effects 0.13** 0.1 0.14 2.17* 2.71 2.68 0.20 3.90*** 4.06 

C1F1R1I0S1 Treated 1.42(1.02) 1.19(0.17) 0.23 5.07(0.15) 4.17(0.13) 0.9 75.1(1.04) 63.6(0.84) 10.59 

Untreated 1.01(0.77) 0.98(1.31) 0.03 6.31(0.09) 5.12(0.17) 1.19 75.4(1.30) 61.4(0.92) 12.13 

Level effects 0.21* 0.21 0.26 1.24** 0.95 2.19 -0.30 2.20* 22.72 

C1F1R1I1S1 Treated 1.54(0.91) 1.21(2.7) 0.33 0.11(0.01) 0.01(0.07) 0.10 82.1(1.17) 69.0(0.91) 17.2 

Untreated 1.37(0.77) 1.08(1.5) 0.29 1.31(0.06) 1.22(0.02) 0.09 78.0(1.21) 65.1(0.87) 15.1 

Level effects 0.27*** 0.13** 0.72 1.20** 1.33*** 0.19 4.10*** 3.90*** 32.3 

Pairwise correlation          

 PCAE HFIAS HFCS        

PCAE 1          

HFIAS -0.67** 1         

HFCS 0.88** -0.71** 1        
Standard errors are in parenthesis. C crop management, F Field management, and climate change mitigation, R risk reduction, I supplementary income, S soil and water 

conservation. PCAE per capita annual expenditure, HFIAS household food insecurity access scale, HFCS household food consumption score 

For bigger packages (C1F0R1I0S1, C1F1R1I1S0, and C1F1R1I1S1), all adopters were food secure compared to 

their counterparts that did not adopt CSAs in real scenarios. Based on these findings, a complete package 

with crop management practices, field management, and climate change mitigation practices, farm risk 

reduction practices, supplementary income generating practices, and soil and water conservation practices 

(C1F1R1I1S1) had the highest overall effect of 1.45 kcals, 0.19 level of severity, and 32.3 scores on the status 

of food security of farmers estimated using per capita annual food expenditure, HFIAS, and HFCS, 

respectively. This implies that farmers using this package were 41.2%, 39.8%, and 12.1% more food secure 

compared to their counterparts who were using none of the practices included under this package. This 

wide-ranging package addresses a bigger spectrum of both field, income, mitigation, and soil conditions 

while also climate change mitigation, soil degradation mitigation for stabilizing productivity, and income 

diversification. In a general context, the overall finding is that non-adopters of this (C1F1R1I1S1) package 

would suffer from food insecurity. Farmers using this package, in addition to productivity improvement 
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(food security), also play a major role in mitigation and farmers’ resilience to adverse climate change 

impacts.  

4. Conclusion and policy implications 

This paper evaluated the impact of climate-smart agriculture on food security of smallholder farmers in the 

tropical moist montane ecosystem of South Western Ethiopia. Climate-smart agriculture is currently 

promoted as an effective approach to improving food security and livelihood situations globally, especially 

in resource-poor developing countries including Ethiopia.  It does this by sustainably increasing agricultural 

productivity, improving household resilience, and reducing greenhouse gas emissions.   

The findings show that smallholder farmers adopting more than one CSA practice experience better food 

security and livelihood situations as compared to non-adopters. The bigger package that consisted of crop 

management, field management, climate change mitigation, risk reduction, income generation, and soil and 

water conservation practices (C1F1R1I1S1) had the highest impact on household food security as compared 

to the non-adopters (C0F0R0I0S0). Adopters of this package were 41.2% more food secure in terms of per 

capita annual food expenditure, 39.8 percent in terms of Household Food Insecurity Access Scale (HFIAS), 

and 12.1 percent in terms of Household Food Consumption Score (HFCS) than the non-adopters. The 

adoption of this package was further positively influenced by farm size, gender, and productive farm asset 

values. This package is covering a wide spectrum and comprehensive field, soil, income, climate change 

mitigation conditions for reducing soil degradation, diversifying income sources, climate change 

mitigation, and production stability. Accordingly, for farmers to get the maximum benefit from CSAs, they 

have to incorporate all CSAs as much as possible. The results depicted that the likelihood of using this 

package was influenced positively by farm size, gender, and farm assets. This package was more likely on 

larger self-owned pieces of plots, and male-headed households with greater farm assets. Thus, if CSAs are 

used in combination and to a larger extent, they have the potential to alleviate food insecurity.  

Farmers have to then be encouraged to incorporate a larger number of CSA packages that consist of at least 

a member of each of the five categories. Crop management, field management, risk reduction, income 

generation, and soil and water conservation practices, have a higher effect on the status of food security. 

This would be primarily to enable them to absorb climate change-associated risks through sensitization on 

the need to invest in productive farm assets, which at the same time improves their ability to uptake 

important CSAs. Extension service providers play a great role in sensitization. Additionally, land 

fragmentation needs to be discouraged through public formal or informal education and engagement in 

alternative income-generating activities by farmers to benefit more from CSAs when practiced on a 

relatively bigger portion of land.  
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Significance statement 

The findings of this study can help understand the severe impacts of climate change and smallholders’ 

vulnerability to food security and thereby contribute its share in implementable policy responses. The study 

gives an on ground real information and provides a clear insight into supporting current efforts of addressing 

persistent food security problems of smallholder farmers. 
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