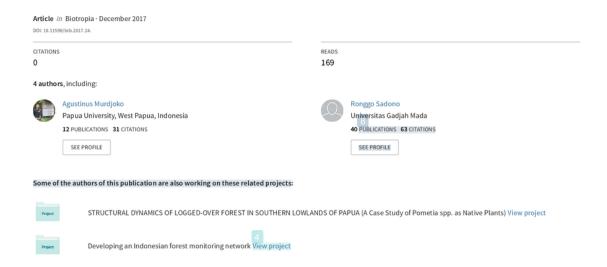
RECOVERY OF RESIDUAL FOREST ECOSYSTEM AS AN IMPACT OF SELECTIVE LOGGING IN SOUTH PAPUA: AN ECOLOGICAL APPROACH

by Agustinus Murdjoko

Submission date: 05-Jul-2019 04:03PM (UTC+0200)

Submission ID: 1149392415

File name: murdjokoetal2017BIOTROPIA.pdf (9.11M)


Word count: 5502

Character count: 30068

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/322329807

RECOVERY OF RESIDUAL FOREST ECOSYSTEM AS AN IMPACT OF SELECTIVE LOGGING IN SOUTH PAPUA: AN ECOLOGICAL APPROACH

RECOVERY OF RESIDUAL FOREST ECOSYSTEM AS AN IMPACT OF SELECTIVE LOGGING IN SOUTH PAPUA: AN ECOLOGICAL APPROACH

AGUSTINUS MURDJOKO^{1*}, DJOKO MARSONO², RONGGO SADONO² and SUWARNO HADISUSANTO³

¹Faculty of Forestry, Papua University, Manokwari 98314, Indonesia ²Faculty of Forestry, Gadjah Mada University, Yogyakarta 55281, Indonesia ³Faculty of Biology, Gadjah Mada University, Yogyakarta 55281, Indonesia

Received 7 December 2016/Accepted 3 June 2017

ABSTRACT

Papua has been experiencing heavy logging activity in its forests for decades. However, only several studies focused on the effect of logging in the forest ecosystem. This research was aimed to analyze recovery processes of the forest ecosystem. The research was conducted in the logged tropical rainforest in South Papua using ecological approach which used tree communities as biotic and soil condition as abiotic indicators. Data were collected in the logging area of PT Tunas Timber Lestari located in the tropical rainforest of South Papua. There were five groups of forests used in this research i.e. unlogged, one year post selectively-logged, five years post selectively-logged, ten years post selectively-logged and fifteen years post selectively-logged forests. Thirty nested plots were laid on each forest group. Canonical Correspondence Analysis (CCA) was applied to analyze the understory and upperstory plant communities. Understory and upperstory plant communities in the ten and fifteen years post-selectively logged forests were not similar to those in the unlogged forest. Soil organic matter (SOM) content in the selectively logged forests was lower than that in the unlogged forest. These occurrences indicated that the selectively logged forests were still recovering and required more than fifteen years to be fully recovered.

Keywords: Canonical correspondence analysis, edaphic factor, logged tropical forest, plant community, soil organic matter

INTRODUCTION

Tropical rainforests play an important role in ecosystem services, such as logging production (Whitfeld et al. 2014; Putz & Romero 2014). The process of production mechanism in the tropical rainforest has a significant impact on abiotic and biotic elements (Zambrano et al. 2014). Those conditions result in the change in the tropical rainforest as an ecosystem and some circumstances of the secondary successional process take place as a response to ecological alterations. Furthermore, most of the tropical rainforests are experiencing the alterations and the selective logging has a significant impact on

ecological factors (Corrià-Ainslie *et al.* 2015; Flores *et al.* 2014). Hence, the logged tropical rainforests are counting on the ability of forest recovery itself. Most indicators to analyse forest recovery are based on tree density, basal area (Whitfeld *et al.* 2014; Rutten *et al.* 2015) and growth rate of residual trees (Do *et al.* 2016; Hoang *et al.* 2011; West *et al.* 2014; Sist *et al.* 2014; Susanty *et al.* 2015) in the logged forests. However, the recovery of disturbed forests should not only be considered based on sustainable timber production, but the ecological elements such as soil conditions and residual trees should also be taken into account as forest recovery indicators.

Some areas in lowland tropical forests in South Papua were intended as logging concession for decades (Kuswandi & Murdjoko 2015; Murdjoko

^{*}Corresponding author: agustinus.murdjoko.papua@gmail.com

2013; Kuswandi 2014). Few studies concerning the effects of logging in Papua logged forests were conducted. Some studies focused only on damages, changes in basal area (Gandhi & Mitlöhner 2014), population dynamics of remaining trees (Murdjoko 2013; Kuswandi & Murdjoko 2015; Murdjoko et al. 2016b) and biomass stock change (Hendri et al. 2012). Therefore, it is necessary to analyze forest recovery using the ecological approach in South Papua. In this analysis, the primary forest was considered as a stable forest ecosystem (Pennington et al. 2015).

Ecological approach took tree communities as biotic factors where many processes such as tree associations, ecological responses of the tree to ecological change as well as successional development can be analyzed based on patterns of tree communities. Besides that, soil condition alters after selective logging (Hattori *et al.* 2013) mainly the amount of soil properties decrease such as Nitrogen content (Asase *et al.* 2014), soil organic matter (SOM) (Prasetyo *et al.* 2015) and other nutrients (Duah-Gyamfi *et al.* 2014; Wasrin & Putera 1999; Edwards *et al.* 2014; Imai *et al.*

2012). Consequently, the edaphic conditions were considered as abiotic indicators to support the explanation of the change in tree communities.

This research was aimed to analyze recovery process of selectively logged tropical rainforest ecosystem in South Papua using ecological approach. Our hypotheses were: 1. tree communities in a selectively logged tropical rainforest were considered to be recovered when tree communities in the rainforest were similar to those in the primary forest; 2. the selectively logged tropical rainforest was considered to be recovered when the edaphic indicators in the rainforest were similar to those in the primary forest.

MATERIALS AND METHODS

Study Area

Research was conducted in the logging area of PT Tunas Timber Lestari located in the tropical rainforest of South Papua with geographical position between 140°21` – 140°59` E and 05°50` – 06°42` S (Fig.1). The annual rainfall was between

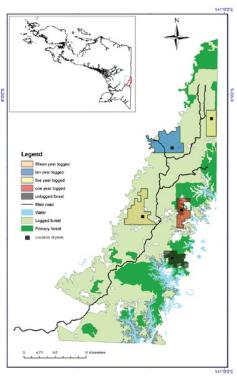


Figure 1 Study area in logging concession of PT Tunas Timber Lestari (Murdjoko et al. 2016c)

3,000 and 4,000 mm with daily moisture range of 75 - 85 %. The edaphic condition was typified as lowland forest with almost flat topography with soil formed by alluvial process (Petocz 1989). The vegetation was dominated by trees belong to *Dipterocarpaceae*, *Lauraceae* and *Myrtaceae* families (Gandhi & Mitlöhner 2014; Kuswandi *et al.* 2015). Several other plants such as lianas, rattans, ferns, palms, herbs, orchids and pandanus grew and interacted with trees in this forest (Murdjoko *et al.* 2016a).

Five groups of forests were used in this research i.e. unlogged, one year post selectively-logged, five years post selectively-logged, ten years post selectively-logged and fifteen years post selectively-logged forests. The unlogged forest was taken as a primary forest which was a stable forest ecosystem. The selectively logged forests

were compared to the unlogged forest to observe the recovery process. The selective logging was carried out by selectively cutting commercial trees having diameter of ≥ 40 cm.

Sampling and Data Collection

Samples were collected in each forest group using systematic sampling plots. The first plot was placed at 200 m from the main road to avoid edge effect. The plots were rectangular with various sizes i.e. 1. 20×20 m for trees (D) having DBH (diameter at breast height) of ≥ 20 cm; 2. 10×10 m for poles (C) having DBH of 10 to < 20 cm; 3. 5×5 m for saplings (B) having height of > 1.5 m and DBH of < 10 cm; and 2×2 m for seedlings (A) having height of < 1.5 m. The four plots were set as nested plot (Fig. 2a). Thirty

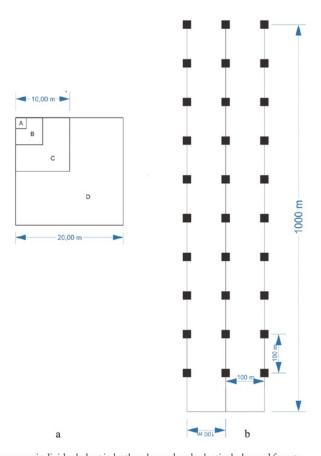


Figure 2 Nested plots to measure individual plant in both unlogged and selectively-logged forests

Note: A = plot for seedlings; B = plot for saplings; C = plot for for poles; D = plot for trees; (a) Distance between plots = 100 m; (b) The 30 nested plots were laid on each forest group (unlogged, one year, five years, ten years and fifteen years post selectively-logged forests)

nested plots were laid in each forest (Fig. 2b) making a total of 150 nested plots for the 5 forest groups (unlogged, one year, five years, ten years and fifteen years post selectively-logged forests). Seedlings and saplings were sampled as understory, while poles and trees were sampled as upperstory in both unlogged and selectively logged forests.

Data collected from seedlings, saplings, poles and trees consisted of numbers of individuals, diameter of individuals for those having DBH ≥ 10 cm and species name of individuals. Species identification was carried out by two herbarium technicians. Unidentified samples were set as voucher specimens and sent to the herbarium of "Balai Penelitian dan Pengembangan Lingkungan Hidup dan Kehutanan (BP2LHK) Manokwari" and Herbarium Manokwariense (MAN) Pusat Penelitian Keanekaragaman Hayati Universitas Papua (PPKH-UNIPA), Manokwari. Validation of the species names of the individuals was checked online at http://www.theplantlist.org/; http://plants.jstor.org and www.ipni.org/jpni/.

Soil samples were taken from the center and four corners of the 20 x 20 m plot. The litterfall samples were collected from each plot by making 1 x 1 m rectangular subplots in each plot. The soil and litterfall samples were sent to the laboratory of *Balai Pengkajian Teknologi Pertanian Yogyakarta* for determining the content of soil organic matter (SOM) for soil samples as well as Carbon (C) content, Nitrogen (N) content and dry weight for litterfall samples.

Data and Statistical Analysis

Canonical Correspondence Analysis (CCA) was applied to show the relationship among tree species using stem density and environmental factors (SOM, C, N contents and dry weight of litterfall) (ter Braak 1987; ter Braak 1986; Khairil et al. 2014). Plants communities were grouped as: a) understory consisted of small individuals (seedlings and saplings); and b) upperstory consisted of large individuals (poles and trees). Tree communities were formed as a result of interaction among tree species, SOM, C content, N content, dry weight of litterfall and forest groups (unlogged, one year, five years, ten years and fifteen years post selectively-logged). The CCA was computed using R statistical software version 3.3.1. with VEGAN package (R Core Team 2014; Oksanen et al. 2013). communities were grouped using Euclidean distance among tree species. The Euclidean distance among tree communities was calculated as the average and confidence interval of 95%.

RESULTS AND DISCUSSION

Tree Communities

Total tree species in the study area were 163 species and classified as understory (159 species) and upperstory (127 species) (Table 1). Within tree species, there were 106 species consisted of both understory and upperstory.

Table 1 Understory (a) and upperstory (b) tree communities formed due to logging activities a. Understory

N	lo	Species	Code	PF	X1LF	X5LF	X10LF X15LF	ALL	NON_AC
1	1	Calophyllum peekelii Lauterb.	Calo_pe	√					
2	2	Knema sp.	Knem_sp	\checkmark					
3	3	Gonocaryum litorale (Blume) Sleumer	Gono_li	V					
4	4	Alstonia scholaris (L.) R. Br.	Alst_sc	\checkmark					
5	5	Guioa pleuropteris (Blume) Radlk.	Guio_pl	\checkmark					
6	6	Dysoxylum sp.	Dyso_sp	\checkmark					
7	7	Lepisanthes sp.	Lepi_sp	\checkmark					
8	8	Rhodomyrtus sp.	Rhod_sp	\checkmark					
9	9	Maasia glauca (Hassk.) Mols, Kessler & Rogstad	Maas_gl	\checkmark					
10	10	Octamyrtus sp.	Octa_sp	\checkmark					
11	11	Chisocheton sp.	Chis_sp	\checkmark					
12	12	Elaeocarpus arnhemicus F.Muell.	Elae_ar	\checkmark					
13	13	Haplolobus floribundus (K.Schum.) H.J.Lam	Hapl_fl	V					

Note: PF = unlogged forest; X1LF = one year post selectively-logged forest; X5LF = five years post selectively-logged forest; X10LF = ten years post selectively-logged forest; X15LF = fifteen years post selectively-logged forest; ALL = present in all forest groups; NON_AC = not associated

Table 1 Continued

N	lo	Species	Code	PF	X1LF	X5LF	X10LF X15LF	ALL	NON_A
14	14	Brackenridgea sp.	Brac_sp.1	√					
15	15	Litsea sp.	Lits_sp	\checkmark					
16	16	Dysoxylum mollissimum Blume	Dyso_mo	\checkmark					
7	17	Antiaris toxicaria Lesch.	Anti_to	\checkmark					
18	18	Ficus variegata Blume	Ficu_va	\checkmark					
19	19	Gyrinops versteegii (Gilg) Domke	Gyri_ve	\checkmark					
20	20	Litsea guppyi (F. Muell.) F. Muell. ex Forman	Lits_gu	\checkmark					
21	21	Maranthes corymbosa Blume	Mara_co	\checkmark					
22	22	Mastixiodendron sp.	Mast_sp	\checkmark					
23	23	Vavaea amicorum Benth.	Vava_am	\checkmark					
24	24	Calophyllum caudatum Kaneh. & Hatus.	Calo_ca	\checkmark					
25	25	Parastemon versteeghii Merr. & L.M.Perry	Para_ve	√					
26	26	Calophyllum laticostatum P.F.Stevens	Calo_la	√					
27	27	Garcinia sp.	Garc_sp	√,					
28	28	Geniostoma sp.	Geni_sp	√					
29	1	Sloanea pulchra (Schltr.) A.C.Sm.	Sloa_pu		V				
30	2	Canarium sp.	Cana_sp		√				
31	3	Horsfieldia sp.	Hors_sp		√				
32	4	Melicope sp.	Meli_sp		√				
33	5	Sterculia sp.	Ster_sp		\checkmark				
34	6	Trema orientalis (L.) Blume	Trem_or		√				
35	7	Trema sp.	Trem_sp		√				
36	8	Trema tomentosa (Roxb.) H. Hara	Trem_to		√				
37	9	Harpullia cupanioides Roxb.	Harp_cu		√				
38	10	Sloanea sp.	Sloa_sp		\checkmark				
39	11	Planchonella sp.	Plan_sp		\checkmark				
40	12	Artabotrys sp.	Arta_sp		\checkmark				
41	13	Archidendron parviflorum Pulle	Arch_pa		V				
42	14	Elaeocarpus culminicola Warb.	Elae_cu		V				
43	15	Diospyros papuana Valeton ex Bakh.	Dios_pa		V				
44	16	Myristica globosa Warb.	Myri_gl		V				
45	17	Glochidion sp.	Gloc_sp		√				
					V				
46	18	Macaranga bifoveata J.J.Sm.	Maca_bi		v,				
47	19	Melicope elleryana (F. Muell.) T.G. Hartley	Meli_el		V				
48	20	Kibara coriacea (Blume) Hook. f. & A. Thomps.	Kiba_co		V				
49	21	Timonius timon (Spreng.) Merr.	Timo_ti		V				
50	1	Hopea papuana Diels	Hope_pa			V			
51	2	Elaeocarpus angustifolius Blume	Elae_an			\checkmark			
52	3	Ficus sp.	Ficu_sp			\checkmark			
53	4	Ruta sp.	Ruta_sp			V			
54	5	Garcinia latissima Miq.	Garc_la			V			
55	6	Schefflera actinophylla (Endl.) Harms	Sche_ac			v			
56	7	Campnosperma brevipetiolatum Volkens	Camp_br			٧,			
57	8	Goniothalamus sp.	Goni_sp			√.			
58	9	Corynocarpus laevigatus J.R.Forst. & G.Forst.	Cory_la			\checkmark			
59	10	Adenanthera pavonina L.	Aden_pa			\checkmark			
60	11	Aglaia spectabilis (Miq.) S.S.Jain & S.Bennet	Agla_sp			\checkmark			
61	12	Dillenia alata (R.Br. ex DC.) Banks ex Martelli	Dill_al			\checkmark			
62	13	Dillenia indica L.	Dill_in			√			
63	14	Diospyros sp.	Dios_sp			V			
			- 1			V			
64	15	Fagraea sp.	Fagr_sp						
65	16	Flindersia pimenteliana F.Muell.	Flin_pi			√.			
66	17	Gynotroches sp.	Gyno_sp			V			
67	18	Manilkara fasciculata (Warb.) H.J.Lam & Maas Geest.	Mani_fa			\checkmark			

Recovery of residual forest ecosystem: impact of selective logging

Table 1 Continued

N	lo	Species	Code	PF	X1LF	X5LF	X10LF X15LF	ALL	NON_A
58	19	Melicope bonwickii (F. Muell.) T.G. Hartley	Meli_bo			V			
9	20	Prunus sp.	Prun_sp			\checkmark			
0	21	Santiria sp.	Sant_sp			\checkmark			
1	1	Prunus javanica (Teijsm. & Binn.) Miq.	Prun_ja				√		
2	2	Terminalia complanata K.Schum.	Term_co				V		
3	3	Diospyros calycantha O.Schwarz	Dios_ca				V		
4	4	Lithocarpus rufovillosus (Markgr.) Rehder	Lith_ru				V		
5	5	Pisonia grandis R. Br.	Piso_gr				v		
6	6	Horsfieldia irya (Gaertn.) Warb.	Hors_ir				1		
	7	Cananga odorata (Lam.) Hook.f. & Thomson	Cana_od				2		
7							-/		
8	8	Carrierea sp.	Carr_sp				V		
9	9	Lepisanthes rubiginosa (Roxb.) Leenh.	Lepi_ru				V		
)	10	Mammea novoguineensis (Kan. & Hat.) Kosterm.	Mamm_no				V		
1	11	Pometia pinnata J.R.Forst. & G.Forst.	Pome_pi				V		
2	12	Semecarpus rufovelutinus Ridl.	Seme_ru				V		
3	13	Siphonodon sp.	Siph_sp				V		
1	14	Gluta papuana Ding Hou	Glut_pa				√		
5	15	Prainea limpato (Miq.) Beumee ex K.Heyne	Prai_li				V		
6	16	Maniltoa browneoides Harms	Mani_br				V		
7	17	Jagera javanica (Blume) Kalkman	Jage_ja				V		
3	1	Canarium hirsutum Willd.	Cana_hi					V	
)	2	Polyalthia sp.	Poly_sp						√
)	3	Virola surinamensis (Rol. ex Rottb.) Warb.	Viro_su						√
	4	Planchonella anteridifera (C.T.White & W.D.Francis ex Lane-Poole) H.J.Lam	Plan_an						√.
2	5	Dracontomelon dao (Blanco) Merr. & Rolfe	Drac_da						٧.
3	6	Magnolia tsiampacca (L.) Figlar & Noot.	Magn_ts						٧.
1	7	Actinodaphne nitida Teschner	Acti_ni						√.
5	8	Semecarpus papuana Lauterb.	Seme_pa						V
5	9	Planchonella keyensis H.J.Lam	Plan_ke						V
7	10	Syzygium anomalum Lauterb.	Syzy_an						√
3	11	Cleistanthus oblongifolius (Roxb.) Müll.Arg.	Clei_ob						√
)	12	Homalium foetidum Benth	Homa_fo						√
00	13	Popowia sp.	Popo_sp						\checkmark
)1	14	Canarium indicum L.	Cana_in						\checkmark
)2	15	Pimelodendron amboinicum Hassk.	Pime_am						\checkmark
)3	16	Blumeodendron tokbrai (Blume) Kurz	Blum_to						\checkmark
)4	17	Aglaia argentea Blume	Agla_ar						\checkmark
)5	18	Gnetum gnemon L.	Gnet_gn						√
)6	19	Mammea sp.	Mamm_sp						√
)7	20	Vatica rassak Blume	Vati_ra						√
)8	21	Fagraea racemosa Jack	Fagr_ra						\checkmark
)9	22	Sterculia shillinglawii F.Muell.	Ster_sh						\checkmark
10	23	Neolitsea sp.	Neol_sp						\checkmark
1	24	Elaeocarpus sp.	Elae_sp						\checkmark
2	25	Endiandra rubescens (Blume) Miq.	Endi_ru						\checkmark
13	26	Endiandra sp.	Endi_sp						\checkmark
4	27	Hopea iriana Slooten	Hope_ir						\checkmark
15	28	Prunus arborea (Blume) Kalkman	Prun_ar						\checkmark
16	29	Lasianthus sp.	Lasi_sp						\checkmark
17	30	Terminalia copelandi Elmer	Term_co.1						V
8	31	Sundacarpus amarus (Blume) C.N.Page	Sund_am						V
19	32	Chisocheton ceramicus Miq.	Chis_ce						V
	24	Teijsmanniodendron bogoriense Koord.	Teij_bo						√

Table 1 Continued

N	0	Species	Code	PF	X1LF	X5LF	X10LF X15LF	ALL	NON_A
121	34	Sloanea pullei O.C.Schmidt ex A.C.Sm.	Sloa_pu.1					V	
122	35	Maasia sumatrana (Miq.) Mols, Kessler & Rogstad	Maas_su					\checkmark	
123	36	Cynometra ramiflora L.	Cyno_ra					\checkmark	
124	37	Canarium asperum Benth.	Cana_as					\checkmark	
125	38	Alstonia spectabilis R.Br. Alst_sp						\checkmark	
126	39	Gymnacranthera farquhariana (Hook.f. & Thomson) Warb.	Gymn_fa					\checkmark	
27	40	Grenia sp.	Grew_sp					\checkmark	
28	41	Pometia acuminata Radlk.	Pome_ac					V	
29	42	Halfordia kendack Guillaumin	Half_ke					\checkmark	
30	43	Timonius rufescens (Miq.) Boerl.	Timo_ru					\checkmark	
31	44	Siphonodon celastrineus Griff.	Siph_ce					\checkmark	
32	45	Palaquium lobbianum Burck	Pala_lo					V	
33	46	Grewia eriocarpa Juss.	Grew_er					\checkmark	
34	47	Gynotroches axillaris Blume	Gyno_ax					\checkmark	
35	48	Planchonia careya (F.Muell.) R.Knuth	Plan_ca					V	
36	49	Myristica sp.	Myri_sp					V	
37	50	Garcinia picrorhiza Miq.	Garc_pi					V	
38	51	Gironniera subaequalis Planch.	Giro_su					V	
39	52	Buchanania arborescens (Blume) Blume	Buch_ar					V	
40	53	Hopea celtidifolia Kosterm.	Hope_ce					V	
41	54	Endospermum medullosum L.S.Sm.	Endo_me					V	
42	55	Rhodamnia cinerea Jack	Rhod_ci					\checkmark	
43	1	Adenanthera novo-guineensis Baker f.	Aden_no						V
44	2	Anisoptera thurifera subsp. polyandra (Blume) P.S.Ashton	Anis_th						√
45	3	Brachychiton sp.	Brac_sp						\checkmark
46	4	Calophyllum sp.	Calo_sp						\checkmark
47	5	Carallia brachiata (Lour.) Merr.	Cara_br						\checkmark
48	6	Celtis latifolia (Blume) Planch.	Celt_la						\checkmark
49	7	Cerbera floribunda K.Schum.	Cerb_fl						\checkmark
50	8	Diospyros pilosanthera Blanco	Dios_pi						√
51	9	Garcinia dulcis (Roxb.) Kurz	Garc_du						\checkmark
52	10	Maniltoa plurijuga Merr. & L.M.Perry	Mani_pl						√
53	11	Nageia wallichiana (C.Presl) Kuntze	Nage_wa						√
54	12	Santiria rubiginosa Blume	Sant_ru						\checkmark
55	13	Schizomeria katastega Mattf.	Schi_ka						\checkmark
56	14	Spathiostemon javensis Blume	Spat_ja						√
57	15	Sterculia macrophylla Vent.	Ster_ma						√
58	16	Terminalia sp.	Term_sp						√
59	17	Vavaea sp.	Vava_sp						V

b. Upperstory

No		Species	Code	PF	X1LF	X5LF	X10LF X15LF	ALL	NON_AC
1	1	Terminalia complanata K.Schum.	Term_co	√					
2	2	Siphonodon celastrineus Griff.	Siph_ce	\checkmark					
3	3	Lepisanthes sp.	Lepi_sp	\checkmark					
4	4	Rhodomyrtus sp.	Rhod_sp	\checkmark					
5	5	Garcinia latissima Miq.	Garc_la	\checkmark					
6	6	Alphitonia incana (Roxb.) Teijsm. & Binn. ex Kurz	Alph_in	\checkmark					
7	7	Dysoxylum sp.	Dyso_sp	\checkmark					
8	8	Fagraea racemosa Jack	Fagr_ra	\checkmark					
9	9	Flacourtia inermis Roxb.	Flac_in	\checkmark					
10	10	Guioa pleuropteris (Blume) Radlk.	Guio_pl	\checkmark					
11	11	Hopea papuana Diels	Hope_pa	\checkmark					

Recovery of residual forest ecosystem: impact of selective logging

Table 1 Continued

N	0	Species	Code	PF	X1LF	X5LF	X10LF X15LF	ALL	NON_A
12	12	Litsea timoriana Span.	Lits_ti	V					
13	13	Nauclea orientalis (L.) L.	Nauc_or	\checkmark					
4	14	Calophyllum laticostatum P.F.Stevens	Calo_la	\checkmark					
.5	15	Myristica globosa Warb.	Myri_gl	\checkmark					
6	16	Octomeles sumatrana Miq.	Octo_su	V					
7	1	Trema sp.	Trem_sp		\checkmark				
8	2	Gonocaryum litorale (Blume) Sleumer	Gono_li		\checkmark				
9	3	Kibara coriacea (Blume) Hook. f. & A. Thomps.	Kiba_co		\checkmark				
0	4	Canarium sp.	Cana_sp		\checkmark				
1	5	Garcinia picrorhiza Miq.	Garc_pi		\checkmark				
2	6	Dysoxylum mollissimum Blume	Dyso_mo		\checkmark				
3	7	Rhodamnia cinerea Jack	Rhod_ci		\checkmark				
4	8	Garcinia dulcis (Roxb.) Kurz	Garc_du		\checkmark				
5	9	Calophyllum sp.	Calo_sp		V				
6	1	Aglaia spectabilis (Miq.) S.S.Jain & S.Bennet	Agla_sp			1			
7	2	Brackenridgea sp.	Brac_sp			\checkmark			
В	3	Elaeocarpus culminicola Warb.	Elae_cu			\checkmark			
9	4	Fagraea sp.	Fagr_sp			\checkmark			
0	5	Flindersia amboinensis Poir.	Flin_am			\checkmark			
1	6	Planchonella densinervia (K.Krause) H.J.Lam	Plan_de			\checkmark			
2	7	Terminalia sp.	Term_sp			\checkmark			
3	8	Sloanea sp.	Sloa_sp			\checkmark			
4	9	Teijsmanniodendron bogoriense Koord.	Teij_bo			\checkmark			
5	10	Canarium indicum L.	Cana_in			\checkmark			
5	11	Buchanania arborescens (Blume) Blume	Buch_ar			\checkmark			
7	12	Elaeocarpus angustifolius Blume	Elae_an			\checkmark			
8	13	Prunus arborea (Blume) Kalkman	Prun_ar			\checkmark			
9	14	Macaranga bifoveata J.J.Sm.	Maca_bi			\checkmark			
0	15	Myristica sp.	Myri_sp			\checkmark			
1	16	Magnolia tsiampacca (L.) Figlar & Noot.	Magn_ts			\checkmark			
2	17	Maasia glauca (Hassk.) Mols, Kessler & Rogstad	Maas_gl			\checkmark			
3	18	Manilkara fasciculata (Warb.) H.J.Lam & Maas Geest.	Mani_fa			\checkmark			
4	19	Adenanthera pavonina L.	Aden_pa			\checkmark			
5	20	Alstonia scholaris (L.) R. Br.	Alst_sc			\checkmark			
5	21	Breonia chinensis (Lam.) Capuron	Breo_ch			\checkmark			
7	22	Corynocarpus laevigatus J.R.Forst. & G.Forst.	Cory_la			\checkmark			
8	23	Dillenia indica L.	Dill_in			\checkmark			
9	24	Diospyros pilosanthera Blanco	Dios_pi			\checkmark			
)	25	Geniostoma sp.	Geni_sp			\checkmark			
l	26	Maasia sumatrana (Miq.) Mols, Kessler & Rogstad	Maas_su			\checkmark			
2	27	Ochrosia sp.	Ochr_sp			\checkmark			
3	28	Planchonella sp.	Plan_sp			\checkmark			
1	29	Siphonodon sp.	Siph_sp			V			
5	30	Syzygium acutangulum Nied.	Syzy_ac			V			
5	31	Timonius rufescens (Miq.) Boerl.	Timo_ru			\checkmark			
7	32	Actinodaphne nitida Teschner	Acti_ni			\checkmark			
8	33	Haplolobus floribundus (K.Schum.) H.J.Lam	Hapl_fl			\checkmark			
9	34	Mammea sp.	Mamm_sp			\checkmark			
0	1	Aglaia argentea Blume	Agla_ar				√		
1	2	Palaquium lobbianum Burck	Pala_lo				\checkmark		
2	3	Gnetum gnemon L.	Gnet_gn				\checkmark		
3	4	Maranthes corymbosa Blume	Mara_co				\checkmark		
4	5	Polyalthia sp.	Poly_sp				√		

Table 1 Continued

N	0	Species	Code	PF	X1LF	X5LF	X10LF X15LF	ALL	NON_A
65	6	Flindersia pimenteliana F.Muell.	Flin_pi				V		
66	7	Maniltoa browneoides Harms	Mani_br				√		
7	8	Chisocheton sp.	Chis_sp				V		
68	9	Chisocheton ceramicus Miq.	Chis_ce				V		
59	10	Elaeocarpus arnhemicus F.Muell.	Elae_ar				\checkmark		
70	11	Ficus drupacea Thunb.	Ficu_dr				V		
71	12	Garcinia × mangostana L.	Garc_žÿ				√		
72	13	Adenanthera novo-guineensis Baker f.	Aden_no				V		
73	14	Sloanea pullei O.C.Schmidt ex A.C.Sm.	Sloa_pu.1				V		
74	15	Calophyllum peekelii Lauterb.	Calo_pe				V		
75	16	Cynometra ramiflora L.	Cyno_ra				V		
76	17	Dracontomelon dao (Blanco) Merr. & Rolfe	Drac_da				V		
7	18	Prainea limpato (Miq.) Beumee ex K.Heyne	Prai_li				V		
8	19	Cleistanthus oblongifolius (Roxb.) Müll.Arg.	Clei_ob				V		
79	20	Glochidion sp.	Gloc_sp				V		
30	21	Harpullia cupanioides Roxb.	Harp_cu				V		
31	22	Pometia pinnata J.R.Forst. & G.Forst.	Pome_pi				V		
32	23						1		
33		Ficus sp.	Ficu_sp				V		
<u> </u>	24	Pisonia grandis R. Br.	Piso_gr				٧		
4	1	Sterculia macrophylla Vent.	Ster_ma					√	
5	2	Nageia wallichiana (C.Presl) Kuntze	Nage_wa					√	
66	3	Pometia acuminata Radlk.	Pome_ac					V	
7	4	Horsfieldia irya (Gaertn.) Warb.	Hors_ir					\checkmark	
8	5	Canarium birsutum Willd.	Cana_hi					\checkmark	
19	6	Hopea iriana Slooten	Hope_ir					\checkmark	
00	7	Elaeocarpus sp.	Elae_sp					\checkmark	
)1	8	Vatica rassak Blume	Vati_ra					\checkmark	
2	9	Canarium asperum Benth.	Cana_as					\checkmark	
13	10	Hopea celtidifolia Kosterm.	Hope_ce					\checkmark	
)4	11	Gymnacranthera farquhariana (Hook.f. & Thomson) Warb.	Gymn_fa					\checkmark	
5	12	Planchonella anteridifera (C.T.White & W.D.Francis ex Lane-Poole) H.J.Lam	Plan_an					V	
16	13	Melicope elleryana (F. Muell.) T.G. Hartley	Meli_el					٧.	
7	14	Anisoptera thurifera subsp. polyandra (Blume) P.S.Ashton	Anis_th					V	
8	15	Calophyllum caudatum Kaneh. & Hatus.	Calo_ca					V	
9	16	Terminalia copelandi Elmer	Term_co.1					\checkmark	
00	17	Alstonia spectabilis R.Br.	Alst_sp					\checkmark	
01	18	Blumeodendron tokbrai (Blume) Kurz	Blum_to					\checkmark	
02	19	Sloanea pulchra (Schltr.) A.C.Sm.	Sloa_pu					\checkmark	
03	20	Garcinia sp.	Garc_sp					\checkmark	
04	21	Gironniera subaequalis Planch.	Giro_su					V	
05	22	Pimelodendron amboinicum Hassk.	Pime_am					V	
06	23	Parastemon versteeghii Merr. & L.M.Perry	Para_ve					\checkmark	
.07	24	Lithocarpus rufovillosus (Markgr.) Rehder	Lith_ru					\checkmark	
08	25	Sundacarpus amarus (Blume) C.N.Page	Sund_am					\checkmark	
09	26	Knema sp.	Knem_sp					\checkmark	
10	27	Endiandra sp.	Endi_sp					\checkmark	
11	28	Campnosperma brevipetiolatum Volkens	Camp_br					\checkmark	
12	29	Prunus javanica (Teijsm. & Binn.) Miq.	Prun_ja					\checkmark	
13	30	Planchonella keyensis H.J.Lam	Plan_ke					\checkmark	
14	31	Syzygium anomalum Lauterb.	Syzy_an					V	
15	32	Cinnamomum sp.	Cinn_sp					\checkmark	
16	33	Halfordia kendack Guillaumin	Half_ke					V	
117	34	Planchonia careya (F.Muell.) R.Knuth	Plan_ca					v	

Table 1 Continued

N	0	Species					X10LF X15LF	ALL	NON_AC
118	35	Endiandra rubescens (Blume) Miq.	Endi_ru					V	
119	36	Homalium foetidum Benth	Homa_fo					\checkmark	
120	37	Virola surinamensis (Rol. ex Rottb.) Warb.	Viro_su					\checkmark	
121	38	Cananga odorata (Lam.) Hook.f. & Thomson	Cana_od					\checkmark	
122	39	Grevia eriocarpa Juss.	Grew_er					\checkmark	
123	1	Barringtonia sp.	Barr_sp						√
124	2	Cochlospermum gillivraei Benth.	Coch_gi						\checkmark
125	3	Gluta papuana Ding Hou	Glut_pa						\checkmark
126	4	Maranthes sp	Mara_sp						\checkmark
127	5	Syzygium branderhorstii Lauterb.	Syzy_br						\checkmark

Those species existed in each forest group (unlogged, one year, five years, ten years and fifteen years post selectively-logged). Patterns of tree communities were formed for each forest group, especially for understory mostly occurred after logging activities. Upperstory were mainly recruited from understory of remnant trees. Several upperstory species were present before logging activities occurred in the forests. Our study presented the results of understory and upperstory communities influenced by logging activities and edaphic conditions.

There were three patterns established in our study i.e. 1. tree species formed a tree community

in a forest group; 2. tree species present in all forest groups; and 3. tree species did not form a community. Presence of certain tree species as understory in all forest groups was facilitated by ecological alterations, including logging activities. Several tree species existed in all forest groups indicating that those tree species were not influenced by ecological alterations.

Distribution of understory tree community was depicted using CCA having 55.34% of the variation for two axes; variation for axis 1 was 30% and variation for axis 2 was 25.34% (Fig. 3; Table 2). ANOVA showed that the model was significant with p < 0.05.

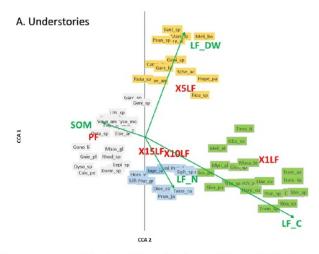


Figure 3 Understory of four tree communities formed due to logging activities symbolized as grey (species grown in PF), green (species grown in X1LF), yellow (species grown in X5LF) and blue (species grown in X10LF-X15LF)

Note: PF = unlogged forest; X1LF = one year post selectively-logged forest; X5LF = five years post selectively-logged forest; X15LF = fifteen years p

Table 2 Summary of Canonical Correspondence Analysis (CCA) for understory tree community

I	A	Total Incaria	
Importance of components	CCA1	CCA2	Total Inertia
Eigenvalue	0.2152	0.1818	0.7175
Proportion explained	0.3	0.2534	
Cumulative proportion	0.3	0.5534	

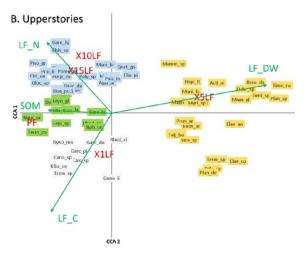


Figure 4 Upperstory of four tree communities formed due to logging activities symbolized as grey (species grown in PF), green (species grown in X1LF), yellow (species grown in X5LF) and blue (species grown in X10LF-X15LF)

Note: PF = unlogged forest; X1LF = one year post selectively-logged forest; X5LF = five years post selectively-logged forest; X15LF = fifteen years post selectively-logged forest; X15LF = fifteen years post selectively-logged forest; S0M = Soil Organic Matter (%); LF_C = Carbon content in litterfall (%); LF_N = Nitrogen content in litterfall (%); LF_DW = dry weight of litterfall (g)

Table 3 Summary of Canonical Correspondence Analysis (CCA) for upperstory tree community

I	Axe	S	Tatal Incomin
Importance of components -	CCA1	CCA2	Total Inertia
Eigenvalue	0.1961	0.1697	0.6277
Proportion explained	0.3124	0.2703	
Cumulative proportion	0.3124	0.5826	

Canonical Correspondence Analysis (CCA) grouped the understory tree species into four tree communities i.e. 28 species in the unlogged forest; 21 species in the one year post selectively-logged forest; 21 species in the five years post selectively-logged forest and 17 species in the ten and fifteen years post selectively-logged forest (Table 1a). Distribution of upperstory tree community was shown of having variation of two axes of 58.26% with 31.24% variation for axis 1 and 27.03% variation for axis 2 (Fig. 4; Table 3). The CCA model was significant at *p* < 0.05.

Edaphic Factors

Interactions among SOM, C content, N

content, dry weight of litterfall and forest groups (unlogged, one year, five years, ten years and fifteen years post selectively-logged forests) were analyzed using CCA to figure out the fitting edaphic factors as the indicators of logged forest recovery. Results of CCA showed that SOM tended to be higher in the unlogged forest, dry weight of litterfall tended to be higher in the five years post selectively-logged forest and C content of litterfall was higher in the one-year post selectively-logged forest (Fig. 3 & 4; Table 4).

Based on this analysis, the ten and fifteen years post selectively-logged forests were still in the recovery process, indicated by lower SOM content in those two logged forests compared to

Table 4 ANOVA of CCA to analyze interactions among SOM, C content, N content, dry weight of litterfall and forest groups (unlogged, one year, five years, ten years and fifteen years post selectively-logged forests)

Edaphic factors	Df	Sums of square	Mean square	F.Model	\mathbb{R}^2	P	
SOM	1	0.746	0.74644	2.438868	0.01442	0.001	*
LF_C	1	0.692	0.6916	2.259688	0.01336	0.001	*
LF_N	1	0.543	0.54259	1.772822	0.01048	0.005	*
LF_DW	1	0.795	0.79469	2.596517	0.01536	0.001	*
Residuals	161	49.27566	0.30606		0.94638		
Total	165	52.05166			1		

Note: *= significant at p < 0.05

the unlogged forest. In contrast, dry weight of litterfall tended to be higher in all logged forests. These results were not in line with research results obtained from logged Bornean rainforest, in which one year post-logged forest produced less litterfall compared to that in the Bornean primary forest. The amount of litterfall in Bornean primary forest was similar to those in the Bornean five years post-logged forest (Prasetyo *et al.* 2015). This condition suggested that responses of logged forests were depended on ecological circumstances. Furthermore, specific silvicultural treatments should be designed carefully by considering forest condition.

Ecological Changes as a Response to Selective Logging

Tree communities in the unlogged forest were different from those in the logged forests. The differences were due to ecological changes caused by logging activities resulted in alteration of species composition (Arbainsyah et al. 2014; Verburg & van Eijk-Bos 2003; Lozada et al. 2012), tree density (Decocq et al. 2014), tree growth rate (Murdjoko et al. 2016b) and association patterns among biotic factors, light availability, ambient moisture, temperature, soil properties and litterfall stock as abiotic factors (Murdjoko et al. 2016c). Tree communities were formed as responses of each tree characteristics toward different ecological circumstances in logged forests. Understory and upperstory tree communities had different reactions toward ecological changes (Murdjoko et al. 2016a; Zhu et al. 2015b). Therefore, there were understory and upperstory tree communities consisted of the same species. Tree communities consisted of seedlings and saplings stages that required more light (Karsten et al. 2014; Flores et al. 2014).

This is the reason why logged forests had altered tree compositions compared to those in the primary forest. Each logged forest has different species composition of the understory tree community. Species composition of the understory tree community was different among the logged forests. Understory tree community in the one year post selectively-logged forest had very different species composition compared to those in the unlogged forest (Fig. 3). Understory tree community in the five years post selectivelylogged forest had very different species composition compared to those in the ten and fifteen years post selectively-logged forests (Fig. 3). These differences in species composition were influenced by changes in environmental conditions (Corrià-Ainslie et al. 2015; Schnitzer & Walter 2013; Duah-Gyamfi et al. 2014).

The CCA showed that understory tree community in the one year post selectively-logged forest was mainly influenced by Carbon content of litterfall. Understory tree community in the five years post selectively-logged forest was formed as a response toward dry weight of litterfall. The nitrogen content of litterfall affected the establishment of understory tree community in the ten and fifteen years post selectively-logged forests. Understory tree community in the unlogged forest was influenced by SOM content. Alterations of soil characteristics in the logged forests were caused by the change of microclimate conditions (Asase et al. 2014; Imai et al. 2012). Logging activities were responsible for the widening canopy gap leading to the increase of light availability toward understory tree community (Schwartz 2016). Logging activities were also responsible for the decrease of tree density causing the changes in tree growth rates (Verburg & van Eijk-Bos 2003; Cannon et al. 1998; Do et al. 2016). These conditions triggered space and light competitions among tree species, especially in the seedlings and saplings stages (Laurans *et al.* 2014).

Upperstory tree community had different patterns from the understory tree community. In the unlogged forest, species composition of understory was different from that of upperstory tree community. Conspecific association occurred in the unlogged forest. Not all species grown in the understory tree community grew in the upperstory tree community of unlogged forest (Murdjoko et al. 2016a). Ecological condition occurred in the upperstory tree community was similar to that in the understory tree community. Trees in tropical forest experienced more diameter growth in the upperstory tree community (Zhu et al. 2015a). Upperstory tree community in the unlogged forest had very different species composition compared to those in the five years post selectively-logged forest (Fig. 4). However, similar species composition was observed among upperstory tree communities in the unlogged forest, one year post selectivelylogged forest, ten and fifteen years post selectively-logged forests (Fig. 4). Tree species located in the five years post selectively-logged forest was the results of species competition caused by the change of ecological conditions. Thus, the current species were not the same as the previous species because of the duration of the ecological process. Upperstory tree community in the logged forests showed a dynamic establishment of tree community. Each species had different growth rate as a response to logging impact (Murdjoko et al. 2016b). Some species had higher population growth rate than others leading to higher survival rate (Murdjoko 2013; Zuidema et al. 2009). Although recovery process was seen to be happening in the ten and fifteen years post selectively-logged forests, the process still requires more time to reach the fully recovered stage.

Implication of Ecological Approach for Sustainable Forest Management

This study proposed an ecological approach to determine whether logged forests were recovered in fifteen years. Existing tree communities and edaphic factors, especially SOM, in the unlogged forest were used as a reference of logged forest reaching recovered condition. SOM plays an

important role to support nutrient absorption in soil (Mutiso et al. 2013). The soil of South Papua is mainly classified as Ultisols, so the characteristic of soil is infertile (Marshall & Beehler 2012). Selective logging activities did not seem to totally change ecological condition. The logged forest was declared to be fully recovered when its conditions had reached similar condition as those in unlogged (primary) forest, especially in terms of ecological aspects such as the content of SOM, stem density and species composition. Therefore, it is imperative to set permanent sample plots in the unlogged (primary) and logged forests, to conduct intensive and persistent monitoring of ecological conditions and tree growth (Krisnawati & Wahjono 2010; Ruslandi et al. 2017a; Ruslandi et al. 2017b). The monitoring results would be valuable as basic information to further evaluate the silviculture protocol. Useful modifications could be designed by taking ecological perspective into account.

CONCLUSIONS

Understory and upperstory tree communities formed different patterns due to logging activities. Species composition existed in the tree communities in the ten and fifteen years post selectively-logged forests were not similar to that in the unlogged forest, meaning that the logged forests were still in the recovery process. SOM content in the logged forest was lower compared to that in the unlogged forest, indicating that the logged forests were not fully recovered. These occurrences indicated that it took more than fifteen years for the logged forests to be fully recovered. Long-term studies are necessary to continuously monitor the ecological process in the logged forest in reaching the recovery stage. The recorded influential ecological factors obtained from this study can be used as indicators for logged forest recovery.

ACKNOWLEDGEMENTS

The research was funded by Beasiswa Pendidikan Pascasarjana Dalam Negeri (BPP-DN) 2014, Manokwari Regency and West Papua Province. The authors are thankful to the

following people for assisting in fieldwork and species vegetation identification as well as providing useful inputs: Nithanel M. H. Benu (Balai Penelitian dan Pengembangan Lingkungan Hidup dan Kehutanan Manokwari), Dr Purnomo (Faculty of Biology, Gadjah Mada University), Prof Dr Ir Suryo Hardiwinoto, M. Agr. (Faculty of Forestry, Gadjah Mada University), Dr Sena Adi Subrata, M.Sc (Faculty of Forestry, Gadjah Mada University), Dr Ir Soewarno Hasanbahri, M.S. (Faculty of Forestry, Gadjah Mada University), Dr Ir Eko Hanudin, M.Sc (Faculty of Agriculture, Gadjah Mada University), Prof Dr Charlie Danny Heatubun, S.Hut, M.Si, FLS (Faculty of Forestry, Papua University), Dr Ir Relawan Kuswandi, M.Sc, Daud Bano, Dedy Subrata May, Vinoba Chandra, Ari Wibowo, Anton Bongga, Sri Emy Rahayu and all staff of PT Tunas Timber Lestari. We are also grateful to anonymous reviewers for valuable comments.

REFERENCES

- Arbainsyah, de Iongh HH, Kustiawan W, de Snoo GR. 2014. Structure, composition and diversity of plant communities in FSC-certified, selectively logged forests of different ages compared to primary rain forest. Biodivers Conserv 23:2445–72.
- Asase A, Asiatokor BK, Ofori-Frimpong K. 2014. Effects of selective logging on tree diversity and some soil characteristics in a tropical forest in Southwest Ghana. J For Res 25:171–6.
- Cannon CH, Peart DR, Leighton M. 1998. Tree species diversity in commercially logged Bornean rainforest. Science 80:1366–8.
- Core Team R. 2014. R: A language and environment for statistical computing. Vienna (AT): R Foundation for Statistical Computing.
- Corrià-Ainslie R, Julio-Camarero J, Toledo M. 2015. Environmental heterogeneity and dispersal processes influence post-logging seedling establishment in a Chiquitano dry tropical forest. For Ecol Manage 349:122–33.
- Decocq G, Beina D, Jamoneau A, Gourlet-Fleury S, Closset-Kopp D. 2014. Don't miss the forest for the trees! Evidence for vertical differences in the response of plant diversity to disturbance in a tropical rain forest. Perspect Plant Ecol Evol Syst 16:279–87.
- Do TV, Cam NV, Sato T, Binh NT, Kozan O, Thang NT, Mitlöhner R. 2016. Post-logging regeneration and growth of commercially valuable tree species in

- evergreen broadleaf forest. Vietnam. J Trop For Sci 28:426–35.
- Duah-Gyamfi A, Swaine EK, Adam KA, Pinard MA, Swaine MD. 2014. Can harvesting for timber in tropical forest enhance timber tree regeneration? For Ecol Manage 314:26–37.
- Edwards DP, Tobias JA, Sheil D, Meijaard E, Laurance WF. 2014. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol Evol 29:511–20.
- Flores O, Hérault B, Delcamp M, Garnier É, Gourlet-Freury S. 2014. Functional traits help predict postdisturbance demography of tropical trees PLoS ONE 9(9): e105022. Available from: https://doi.org/10.1371/journal.pone.010502.
- Gandhi Y, Mitlöhner R. 2014. Tree species composition, diversity and structure in Tunas logging concession area of Papua-Indonesia. Tree 66:47.
- Hattori D, Kenzo T, Irino KO, Kendawang JJ, Ninomiya I, Sakurai K. 2013. Effects of soil compaction on the growth and mortality of planted Dipterocarp seedlings in a logged-over tropical rainforest in Sarawak, Malaysia. For Ecol Manage 310:770–6.
- Hendri, Yamashita T, Kuntoro AA, Lee HS. 2012. Carbon stock measurements of a degraded tropical loggedover secondary forest in Manokwari Regency, West Papua, Indonesia. For Stud China 14:8–19.
- Hoang VS, Baas P, Keßler PJA, Slik JWF, Steege HT, Raes N. 2011. Human and environmental influences on plant diversity and composition in Ben En National Park, Vietnam. J Trop For Sci 23:328–37.
- Imai N, Kitayama K, Titin J. 2012. Effects of logging on phosphorus pools in a tropical rainforest of Borneo. J Trop For Sci 24:5–17.
- Karsten RJ, Meilby H, Larsen JB. 2014. Regeneration and management of lesser known timber species in the Peruvian Amazon following disturbance by logging. For Ecol Manage 327:76–85.
- Khairil M, Wan Juliana WA, Nizam MS. 2014. Edaphic influences on tree species composition and community structure in a tropical watershed forest in Peninsular Malaysia. J Trop For Sci 26:284–94.
- Krisnawati H, Wahjono D. 2010. Effect of post-logging silvicultural treatment on growth rates of residual stand in a tropical forest. Indones J For Res 2:112–24.
- Kuswandi R, Murdjoko A. 2015. Population structures of four tree species in logged-over tropical forest in South Papua, Indonesia: an integral projection model approach. Indones J For Res 2:93–101.
- Kuswandi R, Sadono R, Supriyatno N, Marsono D. 2015. Keanekaragaman struktur tegakan hutan alam bekas tebangan berdasarkan biogeografi di Papua. J Mns dan Lingkung 22:151–9.

- Kuswandi R. 2014. The effect of silvicultural treatment on stand growth of logged-over forest in South Papua. Indones J For Res 1:117–26.
- Laurans M, Hérault B, Vieilledent G, Vincent G. 2014. Vertical stratification reduces competition for light in dense tropical forests. For Ecol Manage 329:79–88.
- Lozada J, Arends E, Sánchez D, Villarreal A, Soriano P, Costa M. 2012. Vegetation succession of logged forest in the western alluvial plains of vegetation succession of logged forest in the Western Alluvial Plains of Venezuela. J Trop For Sci 24:300–11.
- Marshall AJ, Beehler BM. 2012. The ecology of Papua: Part one. Hongkong (HK): Periplus Editions. p. 168-9.
- Murdjoko A. 2013. Recuperation of non-commercial trees in logged forest in Southern Papua, Indonesia. J Man Hut Trop 19:94–102.
- Murdjoko A, Marsono D, Sadono R, Hadisusanto S. 2016a.

 Plant species composition and their conspecific association in natural tropical rainforest, South Papua. Biosaintifika J Biol Biol Educ 8:33–46.
- Murdjoko A, Marsono D, Sadono R, Hadisusanto S. 2016b. Population dynamics of *Pometia* for the period of post-selective logging in tropical rainforest, Southern Papua, Indonesia. Biosaintifika J Biol Biol Educ 8:321-30.
- Murdjoko A, Marsono D, Sadono R, Hadisusanto S. 2016c. Tree association with *Pometia* and its structure in logging concession of South Papua Forest. J Man Hut Trop 22:180-91.
- Mutiso FM, Hitimana J, Kiyiapi JL, Sang FK, Eboh E. 2013.

 Recovery of Kakamega Tropical Rainforest from anthropogenic disturbances. J Trop For Sci 25:566–76.
- Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, ... Oksanen MJ. 2013. Package 'vegan'. Community ecology package, version, 2(9).
- Pennington RT, Hughes M, Moonlight PW. 2015. The origins of tropical rainforest hyperdiversity. Trends Plant Sci 20:693–5.
- Petocz RG. 1989. Conservation and development in Irian Jaya: a strategy for rational resource utilization. Leiden (NL): E. J. Brill.
- Prasetyo E, Hardiwinoto S, Supriyo H. 2015. Litter production of logged-over forest using Indonesia selective cutting system and strip planting (TPTJ) at PT Sari Bumi Kusuma. Procedia Environ Sci 28:676–82.
- Putz FE, Romero C. 2014. Futures of tropical forests (sensu lato). Biotropica 46:495–505.
- Ruslandi R, Cropper Jr. WP, Putz FE. 2017a. Effects of silvicultural intensification on timber yields, carbon dynamics, and tree species composition in a

- Dipterocarp forest in Kalimantan, Indonesia: an individual-tree-based model simulation. For Ecol Manage 390:104–18.
- Ruslandi R, Cropper Jr. WP, Putz FE. 2017b. Tree diameter increments following silvicultural treatments in a Dipterocarp forest in Kalimantan, Indonesia: a mixed-effects modelling approach. For Ecol Manage 396:195–206.
- Rutten G, Ensslin A, Hemp A, Fischer M. 2015. Forest structure and composition of previously selectively logged and non-logged montane forests at Mt. Kilimanjaro. For Ecol Manage 337:61–6.
- Schnitzer SA, Walter PC. 2013. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82:913–9.
- Schwartz G. 2016. Profitability of silvicultural treatments in logging gaps in the Brazilian Amazon. J Trop For Sci 28:68–78.
- Sist P, Mazzei L, Blanc L, Rutishauser E. 2014. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. For Ecol Manage 318:103–9.
- Susanty FH, Suhendang E, Jaya INS. 2015. Mortality and ingrowth pattern of Dipterocarps in forest recovery in East Kalimantan. BIOTROPIA 22(1):11–23.
- ter Braak CJF. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–79.
- ter Braak CJF. 1987. The analysis of vegetationenvironment relationships by Canonical Correspondence Analysis. Vegetatio 69:69–77.
- Verburg R, van Eijk-Bos C. 2003. Effects of selective logging on tree diversity, composition and plant functional type patterns in a Bornean rainforest. J Veg Sci 14:99–110.
- Wasrin UR, Putera AE. 1999. Litterfall in a primary and two logged-over lowland tropical rainforests in Pasirmayang, Jambi. BIOTROPIA 14:36–51.
- West TAP, Vidal E, Putz FE. 2014. Forest biomass recovery after conventional and reduced-impact logging in Amazonian Brazil. For Ecol Manage 314:59–63.
- Whitfeld TJS, Lasky JR, Damas K, Sosanika G, Molem K, Montgomery RA. 2014. Species richness, forest structure, and functional diversity during succession in the New Guinea Lowlands. Biotropica 46:538–48.
- Zambrano J, Coates R, Howe HF. 2014. Effects of forest fragmentation on the recruitment success of the tropical tree *Ponlsenia armata* at Los Tuxtlas, Veracruz, Mexico. J Trop Ecol 30:209–18.
- Zhu H, Yong C, Zhou S, Wang H, Yan L. 2015a. Vegetation, floristic composition and species diversity in a tropical mountain nature reserve in southern

Recovery of residual forest ecosystem: impact of selective logging

- Yunnan, SW China, with implications for conservation. Trop Conserv Sci 8:528–46.
- Zhu Y, Comita LS, Hubbell SP, Ma K. 2015b. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. J Ecol 103:957–66.
- Zuidema PA, Brienen RJ, During HJ, Güneralp B. 2009. Do persistently fast-growing juveniles contribute disproportionately to population growth? A new analysis tool for matrix models and its application to rainforest trees. Am Nat 174:709–19.

RECOVERY OF RESIDUAL FOREST ECOSYSTEM AS AN IMPACT OF SELECTIVE LOGGING IN SOUTH PAPUA: AN ECOLOGICAL APPROACH

11% SIMILARITY INDEX

6%

9%

6%

INDEX INTERNET SOURCES

PUBLICATIONS

STUDENT PAPERS

PRIMARY SOURCES

"Proceeding of the 2nd International Conference on Tropical Agriculture", Springer Nature, 2018

1%

Publication

2

David M. Garner, Naiara Maria de Souza, Luiz Carlos M. Vanderlei. "Risk Assessment of Diabetes Mellitus by Chaotic Globals to Heart Rate Variability via Six Power Spectra", Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 2017

1%

Publication

3

Darrigo, Maria Rosa, Eduardo Martins Venticinque, and Flavio Antonio Maës dos Santos. "Effects of reduced impact logging on the forest regeneration in the central Amazonia", Forest Ecology and Management, 2016.

1%

Publication

Corinne Aubert, Olivier Buisine, M. Petit, F.

4	Slowinski, Max Malacria. "Cobalt-mediated cyclotrimerization and cycloisomerization reactions. Synthetic applications", Pure and Applied Chemistry, 1999 Publication	1%
5	Nunik S. Ariyanti, Merijn M. Bos, Kuswata Kartawinata, Sri S. Tjitrosoedirdjo, E. Guhardja, S. Robbert Gradstein. "Bryophytes on tree trunks in natural forests, selectively logged forests and cacao agroforests in Central Sulawesi, Indonesia", Biological Conservation, 2008 Publication	<1%
6	nph.onlinelibrary.wiley.com Internet Source	<1%
7	Submitted to University of Maryland, University College Student Paper	<1%
8	repository.bilkent.edu.tr Internet Source	<1%
9	Y Khanal, RP Sharma, CP Upadhyaya. "Soil and vegetation carbon pools in two community forests of Palpa district, Nepal", Banko Janakari, 1970 Publication	<1%
10	Submitted to Federal University of Technology Student Paper	<1%

Student Paper

11	Andrew Whitworth, Jaime Villacampa, Alice Brown, Ruthmery Pillco Huarcaya, Roger Downie, Ross MacLeod. "Past Human Disturbance Effects upon Biodiversity are Greatest in the Canopy; A Case Study on Rainforest Butterflies", PLOS ONE, 2016 Publication	<1%
12	Yose Rizal, Imam Robandi, Eko Mulyanto Yuniarno. "Daylight Factor Estimation Based on Data Sampling Using Distance Weighting", Energy Procedia, 2016 Publication	<1%
13	Alex Asase, Bismark K. Asiatokor, Kwasi Ofori-Frimpong. "Effects of selective logging on tree diversity and some soil characteristics in a tropical forest in southwest Ghana", Journal of Forestry Research, 2014 Publication	<1%
14	www.mdpi.com Internet Source	<1%
15	docobook.com Internet Source	<1%
16	elib.suub.uni-bremen.de Internet Source	<1%
17	biosains.mipa.uns.ac.id Internet Source	<1%

18	www.kefri.co.ke Internet Source	<1%
19	www.forda-mof.org Internet Source	<1%
20	www.scribd.com Internet Source	<1%
21	vdocuments.site Internet Source	<1%
22	www.fsc-deutschland.de Internet Source	<1%
23	Elizabeth E. Alexson, Euan D. Reavie, Richard P. Axler, Sergiy V. Yemets et al. "Paleolimnology of a freshwater estuary to inform Area of Concern nutrient delisting efforts", Journal of Paleolimnology, 2017 Publication	<1%
24	gupea.ub.gu.se Internet Source	<1%
25	Yi Ding, Runguo Zang, Xinghui Lu, Jihong Huang. "The impacts of selective logging and clear-cutting on woody plant diversity after 40 years of natural recovery in a tropical montane rain forest, south China", Science of The Total Environment, 2017 Publication	<1%

26	Submitted to Universitas Diponegoro Student Paper	<1%
27	"Co-benefits of Sustainable Forestry", Springer Nature, 2013 Publication	<1%
28	benthamopen.com Internet Source	<1%
29	opus.uni-hohenheim.de Internet Source	<1%
30	J. Becker, H. Pabst, J. Mnyonga, Y. Kuzyakov. "Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro", Biogeosciences, 2015 Publication	<1%
31	ejournal.sinica.edu.tw Internet Source	<1%
32	Submitted to University of Wales, Bangor Student Paper	<1%
33	Kevin P. Sierzega, Michael W. Eichholz. "Linking conservation implications of modified disturbance regimes, plant communities, plant associations, and arthropod communities", Oecologia, 2018 Publication	<1%

Exclude quotes On Exclude matches Off

Exclude bibliography On

RECOVERY OF RESIDUAL FOREST ECOSYSTEM AS AN IMPACT OF SELECTIVE LOGGING IN SOUTH PAPUA: AN ECOLOGICAL APPROACH

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
7 0	
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	
PAGE 8	
PAGE 9	
PAGE 10	
PAGE 11	
PAGE 12	
PAGE 13	
PAGE 14	
PAGE 15	
PAGE 16	
PAGE 17	