21st ANNUAL AUSTRALIAN POULTRY SCIENCE SYMPOSIUM

SYDNEY, NEW SOUTH WALES

1 -3RD FEBRUARY 2010

Organised by

THE POULTRY RESEARCH FOUNDATION (University of Sydney)

and

THE WORLD'S POULTRY SCIENCE ASSOCIATION (Australian Branch)

Papers presented at this Symposium have been refereed by external referees and by members of the Editorial Committee. However, the comments and views expressed in the papers are entirely the responsibility of the author or authors concerned and do not necessarily represent the views of the Poultry Research Foundation or the World's Poultry Science Association. Enquiries regarding the Proceedings should be addressed to: The Director, Poultry Research Foundation Faculty of Veterinary Science, University of Sydney Camden NSW 2570 02 46 550 656; 9351 1656 Tel: Fax: 02 46 550 693; 9351 1693

AUSTRALIAN POULTRY SCIENCE SYMPOSIUM 2010

ORGANISING COMMITTEE

Dr. Peter Groves (Acting Director)

Dr P. Selle (Editor)

Ms. L. Browning (President PRF)

Ms. M. Betts

Professor W.L. Bryden

Dr. D. Cadogan

Dr. A. Crossan

Mr. P. Doyle

Professor D.J. Farrell

Mr. G. Hargreave

Dr. R. Hughes

Dr. A. Kocher

Mr. G. McDonald

Dr. W. Muir

Ms. J. O'Keeffe

Dr. R. Pym

Dr. J. Roberts

Dr T.M. Walker

The Committee thanks the following, who refereed papers for the Proceedings:

D.J. Cadogan

G.M. Cronin

J.A. Downing

P.J. Groves

R.J. Hughes

W.I. Muir

R. Ravindran

P.H. Selle

T. Walker

Australian Poultry Science Symposium 2009

Ms. Linda Browning – President - Poultry Research Foundation

Professor Julie Roberts - President - Australian WPSA Branch

Dr. Peter Selle – University of Sydney

Dr. Jeff Downing – University of Sydney

Professor Mingan Choct – Australian Poultry CRC

Dr. Vivien Kite – RIRDC Chicken Meat Programme

Dr. Ron MacAlpine – Inghams Enterprises

Dr. Angus Crossan – AECL

Mr. Greg Hargreave - Baiada Poultry Pty. Ltd

Dr. Peter Groves - Director - Poultry Research Foundation

AUSTRALIAN POULTRY AWARD

The Australian Poultry Award is presented annually to an Australian resident who has made a long-term outstanding contribution to poultry science and/or the Australian poultry industry. The Award is made by the Australian Branch of the World's Poultry Science Association (WPSA) and takes the form of a suitably inscribed plaque which includes the winner's name, together with a framed citation. Nominations are called for early each year from the membership of WPSA, and completed nominations require to be forwarded to the Secretary of the Australian Branch no later than 31st July. The selection committee consists of the Australian Branch Management Committee of WPSA (10 members) as well as Award recipients from the previous 10 years who are still active in the Australian poultry Industry. Voting is by secret postal ballot, and if more than two candidates are nominated, a preferential voting system is used. The Award is made to the winner at suitable forums where poultry industry people are gathered, such as the annual Australian Poultry Science Symposium, the biennial Poultry Information Exchange (PIX), and the triennial Australian Poultry Convention.

Previous recipients of the award are:

1964	Mr A.O. Moll	1987	Mr E. Rigby
1965	Dr M.W. McDonald	1988	Mr W. Shaw
1966	Professor R.B. Cumming	1989	Dr H. Bray
1967	Mr F. Skaller	1990	Dr M. Mackenzie
1968	Professor G.L. McClymont	1991	Professor D.J. Farrell
1969	Dr S. Hunt	1992	Dr B.L. Sheldon
1970	Dr L. Hart	1993	Mr R. Macindoe
1971	Mr N. Milne	1994	Mr B. Bartlett
1972	Mr R. Morris	1995	Dr R.A.E. Pym
1973	Mr J. & Mr R. Ingham	1996	Dr E.E. Best
1974	Mr S.J. Wilkins	1997	Mr M. Peacock
1975	Professor C.G. Payne	1998	Professor D. Balnave
1976	Mr W. Stanhope	1999	Dr H. Westbury
1977	Professor B. Sinkovic	2000	Mr L. Brajkovich
1978	Mr J. Douglas	2001	Mr R.J. Hughes
1979	Mr D. Blackett	2002	Dr T.M. Grimes
1980	Dr A.F. Webster	2003	Dr R. MacAlpine
1981	Mr R. Fuge	2004	Dr M. Choct
1982	Dr J.G. Fairbrother	2005	Professor P. Spradbrow
1983	Dr R.K. Ryan	2006	Dr Juliet R.Roberts
1984	Mr C. Donnelley	2007	Dr Vivien Kite
1985	Dr P. Gilchrist	2008	Mr Rowly Horn
1986	Dr C.A.W. Jackson		•

SPONSORS of the 2010 AUSTRALIAN POULTRY SCIENCE SYMPOSIUM

Invited Speaker Sponsors

AECL Egg Program
Poultry Research Foundation
RIRDC Chicken Meat Program

Gold Sponsors

Australian Poultry CRC
DSM Nutritional Products Pty. Ltd
Feedworks / Danisco
Phibro Animal Health / Alpharma Animal Health

Silver Sponsors

ADM Australia Pty. Ltd Alltech Biotechnology Pty. Ltd Evonik Degussa Australia Pty. Ltd

Bronze Sponsors

Baiada Poultry Pty. Ltd
BEC Feed Solutions
Biomin Australia
Elanco Animal Health
International Animal Health
JEFO Australia
Kemin (Australia)

Alternative Sponsors

Kemira Zootechny Pty. Ltd

CONTENTS

SCIENCE – UNIVERSITY OF SYDNEY	i
JOHN.L.BARNETT IN MEMORIAM	V
INNOVATIONS IN EUROPEAN POULTRY PRODUCTION	
DEVELOPMENTS AND INNOVATIONS IN BROILER NUTRITION IN THE NETHERLANDS L.L. de Lange – De Heus Voeders B.V. The Netherlands	1
Challenging current poultry feeding dogmas by feed intake restriction and the use of coarse feed ingredients B. Svihus - Norwegian University of Life Sciences Norway	9
CHALLENGES TO EUROPEAN POULTRY PRODUCTION JD. van der Klis - Schothorst Feed Research The Netherlands	17
UPDATE ON CURRENT EUROPEAN BROILER BONE PROBLEMS $C.$ Whitehead $-$ Roslin Institute UK	22
NUTRITION SYSTEMS BEYOND ME	
UTILISATION OF METABOLISABLE ENERGY OF FEEDS IN PIGS AND POULTRY: INTEREST OF NET ENERGY SYSTEMS? J. Noblet, J. van Milgen and S. Dubois – INRA France	26
An effective alternative to the metabolisable energy system R. Gous – University of KwaZulu-Natal South Africa	36
ENERGY IN POULTRY DIETS: ADJUSTED AME OR NET ENERGY J. D. van der Klis, C. Kwakernaak, A. Jansman and M. Blok - Schothorst Feed Research The Netherlands	44
Non-starch polysaccharides and enzyme application influence the net energy value of broiler diets M. Choct, A. Tukei and D.J. Cadogan – Australian Poultry CRC	50
BROILER NUTRITION	
UPDATE ON NEAR INFRARED REFLECTANCE ANALYSIS OF GRAINS TO ESTIMATE NUTRITIONAL VALUE FOR CHICKENS J.L. Black, R.J. Hughes, M.S. Geier, S.G. Nielsen, A.M. Tredrea and P.C. Flinn – J. Black Consulting	51
The Performance of Broilers Offered Sorghum-Compared to Wheat-Based Diets: A large scale experiment R.A. Perez-Maldonado and H. Rodrigues – Dept. Primary Industries & Fisheries QLD	55

BROILER NUTRITION (Cont.)	
ENERGY ULITISATION AND DIGESTIBILITY OF FATS AS INFLUENCED BY THE AGE OF BROILERS P. Tancharoenrat, F. Zaefarian, G. Ravindran and R. Ravindran, – Massey	59
University NZ	
TOOLS IN EARLY NUTRITION TO MAXIMISE GROWTH PERFORMANCE A. Kocher, A. Naylor, C. Martin, T. Wilson and J. Hazeldene - Alltech Biotechnology	60
DIETS HIGH IN LINOLEIC ACID REDUCE OMEGA-3 LONG CHAIN POLYUNSATURATED FATTY ACIDS IN CHICKEN TISSUE L.R. Kartikasari, R. J. Hughes, M.S. Geier, M. Makrides and R.A. Gibson – University of Adelaide	64
THE VULNERABILITY OF SORGHUM TO "MOIST-HEAT" P.H. Selle, R.J. Gill and J.A. Downing – University of Sydney	68
The nutritive value of high-yielding triticale varieties and their potential for inclusion in poultry diets $A.Widodo$, $P.Iji$ and $J.V.Nolan - University of New England$	72
EFFECTS OF HOUSING AND LITTER ON BEHAVIOUR AND FOOD QUALITY	
Influence of housing systems on the bacteriologoical quality and safety of table eggs K. de Reu, W. Messens, K. Gruspeerdt, M. Heyndrickx, B. Rodenburg, M. Uyttendaele and L.Herman – Institute for Agriculture and Fisheries Research (ILVO)	7 4
LITTER CONSUMPTION BY POULTRY AS AFFECTED BY DIET STRUCTURE B. Svihus and H. Hetland - Norwegian University of Life Sciences Norway	82
The effects of interrupting a dustbathing bout on the choice behaviour of Laying Hens in a y-maze test S.M. Laine, G.M. Cronin, J.C. Petherick and P.H. Hemsworth – University of Melbourne	85
EGG QUALITY IN THE AUSTRALIAN EGG INDUSTRY: AN UPDATE J.R. Roberts and K.K. Chousalkar – Australian Poultry CRC	86
BROILER PERFORMANCE AND NUTRITION	
OPTIMAL SULPHUR AMINO ACIDS TO LYSINE RATION IN GROWER PHASE IN ROSS 308 BROILERS T.G. Madsen, E. Hangoor, P.J.A. Wijtten, J.K.W.M. Sparrla and A. Lemme – Evonik Degussa Pty. Ltd	90
DIETARY ENZYMES ALTER SORGHUM PROTEIN DIGESTIBILITY AND AME CONTENT A.Sultan, X. Li, D. Zhang, D.J. Cadogan and W.L. Byrden - University of Queensland	94

BROILER PERFORMANCE AND NUTRITION (Cont.)	
ROSS 308 BROILER PERFORMANCE	95
T.G. Madsen, S. Carroll, C. Kemp and A. Lemme – Evonik Degussa Pty Ltd	
VARIATION IN NUTRIENT COMPOSITION AND STRUCTURE OF HIGH-MOISTURE MAIZE DRIED AT DIFFERENT TEMPERATURES	99
M.M. Bhuiyan, P.A. Iji, A.F. Islam and L.L. Mikkelsen – Unversity of New England	
INFLUENCE OF FEED FORM ON INTAKE PREFERENCE AND PERFORMANCE OF YOUNG BROILERS	103
K.H. Huang and M. De Beer – Aviagen Inc. USA	
HEALTH	
DIFFERENTIATION BETWEEN PATHOGENIC SEROTYPE 1 ISOLATES OF MAREK'S DISEASE VIRUS (MDV1) AND THE RISPENS VACCINE IN AUSTRALIA USING REAL-TIME PCR. K.G. Renz, B.F. Cheetham and S.W. Walkden-Brown - University of New England	107
A QUANTITATIVE PROFILE OF INFECTIOUS BRONCHITIS VIRUS IN FAECES OF LAYING HENS	111
K.K. Chousalkar and J.R. Roberts – Charles Stuart University	
THE STRATEGIC USE OF ORGANIC ACIDS TO IMPROVE GUT HEALTH IN POULTRY L. Li - Kemira Asia Pacific, Singapore	115
INACTIVATION OF VIRUSES AND COCCIDIA IN BROILER LITTER FOLLOWING HEAPING OR WINDROWING AT THE END OF THE BATCH A.F.M.F. Islam, S.K. Burgess, P.Easey, B. Wells and S.W. Walkden-Brown – University of New England	118
SPATIAL AND TEMPORAL VARIATION IN AMMONIA CONCENTRATIONS IN BROILER SHEDS: EFFECTS OF CHICKEN AGE AND SHED TYPE A.F.M.F. Islam, M. Dunlop, B. Wells and S.W. Walkden-Brown – University of New England	122
LAYER NUTRITION, WELFARE AND FOOD SAFETY	
EGGSHELL FACTORS INFLUENCING EGGSHELL PENETRATION AND WHOLE EGG CONTAMINATION BY DIFFERENT BACTERIA, INCLUDING SALMONELLA ENTERITIDIS K. de Reu, W. Messens, K. Gruspeerdt, M. Heyndrickx, M. Uyttendaele and L. Herman - Institute for Agriculture and Fisheries Research (ILVO)	126
THE EFFECTS OF TWO LIGHT-DARK SCHEDULES ON EGG LAYING TIME AND SYNCHRONY, THE INCIDENCE OF LAYING IN THE DARK AND HEN WELFARE G.M. Cronin, S.S. Borg, T.H. Storey, J.A. Downing and J.L. Barnett – University of Sydney	130
ATTRACTING LAYING HENS INTO RANGE AREAS USING SHELTERBELTS E.A. Borland, S. Hazel, P.C. Glatz, B.K. Rodda, H. Rimmington, S.C. Wyatt and Z.H. Miao – University of Adelaide	134

LAYER NUTRITION, WELFARE AND FOOD SAFETY (Cont.)	
Attracting Laying Hens into Range areas using shade and forage <i>P.C. Glatz, B.K. Rodda, H. Rimmington, S.C. Wyatt and Z.H. Miao - SARDI</i>	135
OPTIMUM LEVEL OF CASSAVA PULP IN DIETS FOR LAYERS N. Chauynarong, P.A. Iji and U. Kanto – University of New England	136
IMPLICATIONS ON THE USE OF CANOLA MEAL AND RECOMMENDATIONS TO REDUCE FISHY TAINT IN EGGS FROM BROWN HENS R. Perez-Maldonado and T. Treloar – Rider Perez-Maldonado Consultancy	140
EFFECT OF A COMPLEX ENZYME ON THE DIGESTIBILITY OF LAYER DIETS CONTAINING PALM KERNEL MEAL V. Ravindran, D. Thomas, A. Leary and A.Kocher - Alltech Biotechnology	141
GLOBAL GOALS TO PROMOTE POULTRY PRODUCTION IN DEVELOPING COUNTRIES	
OPPORTUNITIES AND SUSTAINABILITY OF SMALLHOLDER POULTRY PRODUCTION IN THE SOUTH PACIFIC REGION P. Glatz, I.D. Black, W. Ayalew, J.K. Pandi, R.J. Hughes, Z.H. Miao, J. Wahanui, T. Jansen, V. Manu and B.K. Rodda – SARDI	145
The role of the world's poultry science association (wpsa) in support of poultry production in developing countries $R.\ Pym$ - $WPSA$	153
THE EVOLVING ROLE OF FAO IN POULTRY DEVELOPMENT S.D. <i>Mack</i> – <i>FAO Italy</i>	161
IMPROVED VILLAGE POULTRY PRODUCTION IN THE SOLOMON ISLANDS R. Parker – Kai Kokorako Perma-Poultry	171
HEAVY METAL CONTAMINATION IN MINERAL SOURCES FOR MONOGASTRIC FEED IN ASIA PACIFIC T. Jarman, A. Frio, A.Leary, A.Kocher, S. Fike and B. Timmons - Alltech Asia-Pacific Bioscience Centre	174
COMMERCIAL DUCK PRODUCTION	
DUCK PRODUCTION IN AUSTRALIA P.R. Brown - Pepe's Ducks	178
THE EFFECTS OF STRAIN AND SEASON ON THE PERFORMANCE OF COMMERCIAL DUCKS UNDER AUSTRALIAN CONDITIONS J.A. Downing and W. Taylor - University of Sydney	182
THE PERFORMANCE OF COMMERCIAL DUCKS FED DIFFERENT DIETARY PROTEIN CONCENTRATIONS DURING THE FINISHER PHASE J.A. Downing and J. Ischan — University of Sydney	186
TWO-DAY-OLD DUCKLINGS INTERACT MORE WITH A BELL DRINKER THAN A NIPPLE DRINKER SUSPENDED ABOVE A TROUGH G.M. Cronin, K.J. Williams and J.A. Downing - University of Sydney	190

BROILER INTESTINAL HEALTH

AUTHOR INDEX	215
FEED ADDITIVES INFLUENCE GOBLET CELL DISTRIBUTION AND VILLUS-CRYPT ARCHITECTURE IN BROILERS AFTER NECROTIC ENTERITIS CHALLENGE H.M. Golder, M.S. Geier, P.I. Hynd, R.E.A. Forder, M. Boulianne and R.J. Hughes - University of Adelaide	211
EFFECTS OF NOVEL FEED ADDITIVES ON GUT HEALTH AND OVERALL PERFORMANCE IN BIRDS CHALLENGED WITH CLOSTRIDIUM PERFRINGENS M.S. Geier, L.L. Mikkelsen, V.A. Torok, G.E. Allison, C. Olnood, A.Setia, M. Choct, M. Boulianne and R.J. Hughes - SARDI	207
THE ABILITY OF GREEN TEA TO POSITIVELY MODIFY THE GUT MICROFLORA IN BROILER CHICKENS D.V. Thomas, A.L. Molan and V. Ravindran – Massey University	203
EFFECTS OF PHYTOGENICS AND ZINC BACITRACIN ON PERFORMANCE AND INTESTINAL HEALTH STATUS OF BROILERS R.M. Gous, T. Steiner and R. Nichol – Biomin Australia	199
CHARACTERISATION OF GUT BACTERIA ASSOCIATED WITH BROILER PERFORMANCE ACROSS VARIOUS AUSTRALIAN FEEDING TRIALS V.A. Torok, K. Ophel-Keller, L.L. Mikkelsen, R. Perez-Maldonado, K. Balding, R. MacAlpine and R.J. Hughes - SARDI	195
MICROBIAL PROFILES OF THE GASTRO-INTESTINAL TRACT OF BROILERS AND ITS RELATION TO FEED EFFICIENCY L.L. de Lange and P.J.A. Wijtten - De Heus Feeds B.V. The Netherlands	191

THE NUTRITIVE VALUE OF HIGH-YIELDING TRITICALE VARIETIES AND THEIR POTENTIAL FOR INCLUSION IN POULTRY DIETS

A. WIDODO¹, P. IJI¹ and J.V. NOLAN¹

Triticale is a cereal grain that holds great promise as an alternative to wheat and other conventional grains used in poultry diets. Triticale generally has a higher yield than wheat and adapts to more difficult agronomic conditions than wheat (Korver *et al.*, 2004). A crop breeding group at the University of New England (UNE) has developed varieties that are even more high-yielding and more disease-resistant than the current commercial strains. These varieties will need further evaluation to establish their potential for animal, and particularly poultry feeding.

Eight varieties of triticale were obtained from the breeding group and subjected to detailed and proximate analysis, prior to feeding trials. Cultivar H116 contained more protein than the other cultivars (139 g/kg) while the lowest protein content was observed in cultivar H127 (Table 1). The cultivars were very similar in lysine content, containing between 4.3 g/kg in cultivar H127 and 4.9 g/kg in H249. Methionine content varied from 1.6 (cultivar H127) to 2.0 g/kg in cultivar H249. The gross energy content of the grains ranged from 18.2 (H127 and 128) to 18.5 MJ/kg (H55); the other five cultivars being iso-caloric at 18.4 MJ/kg. Crude fat was also highest (27.4 g/kg) in cultivar H55 and lowest in H128, and this may be the major cause of differences in energy values of between these two cultivars. Total starch varied from 578 g/kg in cultivar H157 to 657 g/kg in H249. Cultivar H55 was the highest in non-starch polysaccharides, 139 g/kg while H20 contained only 90 g/kg.

Calcium content varied from 0.3 to 0.5 g/kg, respectively in cultivars H426 and H55, while the phosphorus content was highest (4.4 g/kg) in cultivar H157 and lowest (3.5 g/kg) in H20. Phytate was quite high in all cultivars, generally close to half of the total P content. Cultivar H20 had the lowest level of phytate, 1.8 g/kg, while the highest amount, 2.2 g/kg, was found in H249.

Table 2 shows the digestibility of dry matter, starch and viscosity of samples during *in vitro* digestion. The *in vitro* method was adapted from Babynsky *et al* (1990), with slight modifications. The *in vitro* dry matter digestibility (IVDMD) varied between 71.1 % (H55) and 77.5 % (H128). Starch digestibility was between 19.5 % (H249) and 40.3 % (H157), and this low *in vitro* digestibility may be due to the high content of resistant starch. Cultivar H55 was the most viscous during digestion (1.2 cP) and this may be due to the high concentration of NSP in this cultivar.

REFERENCES

Babinsky L, Van der Meer JM, Boer H, Hartog (1990) *J Sci Food Agric*. **50**, 173-178 Korver DR, Zuidhof MJ Lawes KR (2004) *Poult. Sci.* **83**, 717-725.

¹ School of Environmental and Rural Science, University of New England, Armidale NSW 2351.

Tabel 1. Chemical composition (g/kg, dry matter) of the different varieties of triticale

Comment	Variety								
Component	H116	H127	H128	H157	H20	H249	H426	H55	
Dry matter	879	873	873	873	872	875	871	873	
Ash	19.2	17.4	18.1	18.7	18.1	17.5	17.5	16.7	
Crude protein	139	125	135	136	135	136	132	126	
Gross Energy (MJ/kg)	18.4	18.2	18.2	18.4	18.4	18.4	18.4	18.5	
Crude fat	18.5	15.9	13.9	14.6	16.3	17.5	19.1	27.4	
Ca	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.5	
P	4.1	4.0	4.1	4.4	3.5	3.6	4.0	3.7	
K	5.7	5.5	5.8	5.7	5.9	5.4	5.7	5.0	
Mn (mg/kg)	45.7	59.6	44.1	59.7	53.5	49.4	45.9	47.3	
Na (mg/kg)	26.5	16.6	33.1	35.0	17.7	38.8	13.8	30.1	
Total Starch	612	654	639	578	612	657	626	592	
Resistant starch	442	478	484	463	455	509	453	453	
P-Phytate	2.0	2.1	2.1	2.2	1.8	2.2	2.0	1.9	
Total NSP	102	104	100	119	90	96	100	139	
Soluble NSP	10	12	10	10	11	9	10	11	
Insoluble NSP	92	91	89	110	79	87	90	128	
Free sugars	31	27	29	23	31	27	33	28	
Amino Acids									
Arginine	7.5	6.6	7.6	7.4	7.3	7.9	7.6	7.4	
Threonine	4.4	3.9	4.6	4.4	4.3	4.7	4.4	4.5	
Alanine	5.9	5.1	5.7	5.5	5.8	6.0	5.6	5.4	
Lysine	4.6	4.3	4.8	4.6	4.7	4.9	4.7	4.6	
Methionine	1.9	1.6	1.8	1.9	1.9	2.0	2.0	1.8	
Valine	6.5	5.5	6.5	6.4	6.4	6.8	6.4	6.1	
Isoleucine	4.9	4.1	4.8	4.8	4.7	5.0	4.8	4.5	
Leucine	9.1	8.0	9.3	9.2	8.9	9.5	9.0	8.8	
Phenylalanine	6.2	5.6	6.6	6.4	6.0	6.5	6.4	6.1	

Tabel 2. *In vitro* digestibility of samples

Component	Variety							
Сотронен	H116	H127	H128	H157	H20	H249	H426	H55
Dry matter digestibility (%)	75.8	76.3	77.5	74.0	75.4	77.3	77.4	71.1
Starch digestibility (%)	22.0	24.4	25.8	40.3	20.9	19.5	39.4	30.2
Viscosity during digestion (cP)	1.0	1.1	1.0	1.0	1.0	1.1	1.0	1.2

CERTIFICATE OF PRESENTATION

This certificate is awarded to

Mr. Aluisius Widodo University of New England

In conjunction with

in recognition of valuable contributions to

The Australian Poultry Science Symposium

1st -3rd February 2010

with his presentation on

"The nutritive value of high-yielding triticale varieties and their potential for inclusion in poultry diets"

Dr. Peter Groves

3-2-2010

Date