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Abstract. Tapilatu RF, Wona H, Siburian RHS, Saleda ST. 2020. Heavy metals contaminants in the eggs and temperatures of nesting 
beaches of sea turtles in Kaimana, West Papua, Indonesia. Biodiversitas 21: 4582-4590. Etna Bay and Venu Island in Kaimana, West 

Papua, Indonesia are two of many areas that sea turtles use during the nesting season. Here, we report data on heavy metals contaminants from 
a sample of eggs of green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) turtles collected from a subset of two nests during the 
2016 nesting season at Venu Island, Kaimana, West Papua, Indonesia. Three heavy metals contaminants (i.e. mercury, cadmium, arsenic) 
found in eggs exceeded the established safety limits for human consumption. Other contaminants such as lead, zinc, manganese, iron, and 
copper were found below the established safety standards. There is an implication of the containment of heavy metals in sea turtle eggs to 
human health in Kaimana when it is consumed. It is highly recommended that the harvesting of turtle eggs and adults of all of sea turtles at 
Kaimana be totally prohibited. In addition, overall, beach temperatures in Lakahia fluctuated at a larger range between 26.5o and 33.8oC than 
at Venu island that fluctuated between 25.9o and 30.2oC. Mean daily temperatures of in-situ nests during the middle third of the incubation 

period were above the pivotal temperature of 29.0oC for temperature-dependent sex determination suggesting a female bias may already exist. 
The chemical contamination found in the eggs of C. mydas and E. imbricata at Venu Island is thought to assist sea turtle conservation initiatives 
in the area. The conservation program at the prime nesting habitat for green and hawksbill turtles on the small islands west of Kaimana such 
as Venu Island should be intensified to reverse the decline and increase population size of nesting sea turtle species. It is recommended that 
education and outreach be implemented in surrounding communities in Kaimana to raise awareness about marine turtle conservation. 
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INTRODUCTION 

Etna Bay and Venu Island in Kaimana, West Papua, 

Indonesia are two of many areas that sea turtles use during 

the nesting season. Anecdotal evidence from the reports of 

local villagers suggests the presence of leatherback turtles 

(Dermochelys coriacea) in the waters of Etna Bay and 

nesting on the adjacent beach. These seasonal sightings 

indicate that Etna Bay and Venu Island might be important 

nesting and inter-nesting areas for leatherbacks turtle and 
other turtle species, such as endangered olive-ridley 

(Lepidochelys olivacea), green (Chelonia mydas) and 

critically endangered hawksbill turtle (Eretmochelys 

imbricata) turtles.  

While the presence of sea turtles in Etna Bay is a good 

indication of their existence in the area, they likely face a 

great risk of being harvested at other nesting beaches 

situated along the coast of the Bird’s Head Seascape 

(Tapilatu et al. 2017; Tapilatu unpublished report), because 

of the proximity to human settlements. Data on leatherback 

and other marine turtle nesting activity on non-indexed 
beaches are scarce. The term non-index beaches are used to 

refer to beaches or sites where nesting activity is in lower-

intensity (Santidrian-Tomillo et al. 2017). These data are 

critical for assessing the overall status of the Bird’s Head 

Seascape nesting population and ensuring that sea turtle 

populations have adequate protection at non-indexed 

beaches. More importantly, the data will help in developing 

a region-wide sea turtle conservation and management 

strategy to reverse population decline as indicated by the 

decline of leatherback on the north coast of Bird’s Head 

Peninsula (Tapilatu et al. 2013) and other sea turtle 

populations in the north coast of Manokwari (Tapilatu 

2017). 
In recent years, the protection of sea turtles in Indonesia 

had increased at the index nesting beaches. Due to lack of 

enforcement, harvesting of turtle eggs had often occurred 

and contributed as one of the major factors to the decline of 

sea turtle nesting such as at Bird’s Head Seascape. 

Furthermore, the presence of illegal egg collectors had 

resulted to high number of eggs being sold in the local 

markets including Kaimana. A few studies had reported that 

sea turtles are affected from toxic contaminants (Sakai et al. 

1995; Godley et al. 1999) due to their long-lived 

characteristic with vast migration areas, thus increase their 
chances of being exposed to environmental toxicants and are 

able to accumulate a variety of contaminants over multiple 

years. Worldwide, waste from various industrial, 

agricultural, and human activities was easily disposed into 

the sea without proper treatments. Most of the waste 
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contains toxic metals compositions would accumulate in the 

marine environments including habitat of sea turtles. 

Moreover, feeding behavior would also influence the 

accumulation of heavy metals in sea turtles. The diets of 

green turtle are mainly consisting of marine algae and 

seagrasses, which are known to have the ability to 

accumulate heavy metals (Khristoforova and Kozhenkova 

2002). These heavy metals would also be transferred from 

the mother to offspring by their eggs. Essential metals are 

used in the development of the embryo within the eggs. In 
similar way, toxic metals including mercury, lead, and 

cadmium, even in limited amounts would be transferred. 

Non-essential and essential metals are able to act as 

toxicants at high concentrations in organisms (Kobayashi 

and Okamura 2004). In addition to the inorganic elements, 

the environmental conditions at the nesting beaches are a 

major determinant of incubation temperature. Even within a 

rookery, there must be some variation in incubation 

temperature. As such, it is of interest to evaluate naturally 

heavy metal contaminants and occurring sex ratios in sea 

turtle populations in Kaimana. The two components of this 
study are important for both conservation of sea turtles and 

for public health awareness in Kaimana.  

The government of Kaimana District, West Papua 

Province has engaged the Research Centre of Pacific Marine 

Resource (RC-PMR), University of Papua (UNIPA), to 

implement a research project to obtain the necessary data 

and engage the local community. The research aimed to: (i) 

identify the presence of heavy metals contaminants in the 

eggs of two sea turtle species, i.e. C. mydas and E. imbricata, 

and (ii) profile the temperature of the beach and nest. The 

first aim has particular importance to inform the potential 
health risks if the eggs are being consumed by human, while 

the second aim is critical to estimate occurring sex ratios in 

the context of management and conservation. The planned 

outcome of this survey was to bring this information in the 

form of recommendations to the Kaimana government so 

they can develop an appropriate marine turtle management 

plan. Our work will fill an important knowledge gap in 

describing the regional threats to sea turtles and their nests, 

information that is critical for directing conservation 

initiatives. 

MATERIALS AND METHODS 

Study area and period 

This study took place on Lakahia and Venu Island 

(Figure 1) of Kaimana, West Papua, Indonesia during the 

2016 sea turtles nesting season. Lakahia is a village on an 

island and adjacent area close to the village on the mainland 

is also called Lakahia. Administratively, Venu Island is 

included in the area of Adijaya village, Buruway District, 

Kaimana Regency. Venu Island is designated as a Marine 

Wildlife Reserve based on the Decree of the Minister of 

Forestry and Plantation Republic of Indonesia No. 891/Kpts-

II/1999 since October 14, 1999. It has an area of 16320.00 
ha and is under Management of Technical Implementation 

Unit (UPT) of Natural Resources Conservation Agency 

(BKSDA) West Papua. Beach and nest temperatures were 

monitored between March and September 2016. During the 

visit in March, sample of sea turtle eggs was collected by 

research team. To avoid eggs poaching, the exact locations 

of nests are not explicitly mentioned.

 

 

 
 

Figure 1. Map of study area in Lakahia and Venu Island, Kaimana, West Papua, Indonesia 
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Heavy metals contaminants 

Large scale inorganic elements studies of sea turtle eggs 

have often been avoided because they require the sacrifice 

of eggs in a threatened or endangered population (Sakai et 

al. 1995). In March 2016, fresh sea turtle eggs were 

randomly collected from recently laid nests of green (C. 

mydas) and hawksbill (E. imbricata) sea turtles to be 

analyzed for heavy metal contaminants (Table 1). Due to 

protection status of sea turtles in Indonesia, only a few eggs 

were permitted to be taken. Three eggs were collected from 

each nest and stored in a refrigerator at the Research Centre 
of Pacific Marine Resources, University of Papua (UNIPA) 

in Manokwari. The eggs were then shipped to ProLing 

Laboratory, Faculty of Fisheries and Marine Science, Bogor 

Agricultural University. This lab is an accredited 

environmental laboratory in Bogor, West Java for heavy 

metals analysis. The analysis was undertaken by using the 

American Public Health Association (APHA) 2012 

Protocols on Metals by cold-vapor atomic absorption 

spectrometry: Mercury (3112-B, 3030-E); Cadmium, Lead, 

Zinc, Manganese, and Copper (3111-B, 3030-E); Arsenic 

(3114-B, 3030-E); and Iron (3500-Fe-B).  

Beach and nest temperature monitoring 

A type of temperature data logger (Hobo Water Temp 

Pro, Onset Computer Corporation, Pocasset, MA) was used 

to record sand and nest temperatures. The datalogger 

accurately recorded temperatures to approximately ± 0.3-

0.4°C. The data loggers were calibrated and programmed in 

the Research Center of Pacific Marine Resources at UNIPA 

Manokwari to record the temperature every hour during the 

main nesting season (March-September 2016) in the boreal 

summer season in Lakahia and Venu Island, Kaimana.  

Generally, the formation of the beaches includes an 

intertidal zone, then a sloping zone, followed by a vegetative 
dune. The majority of turtle nesting activity typically occurs 

well above the high tide line within the sloping zone of the 

beach. In order to monitor beach temperatures, a temperature 

transect running from the high-tide line to the vegetation was 

evaluated. Two data loggers were buried at: 1) the upper 

portion of the open beach area, approximately 2 to 3 m from 

the vegetation line and 2) the lower beach zone, 

approximately 3 to 5 m from the high-tide line. Meanwhile, 

due to the small size of Venu Island, two data loggers were 

placed on east and west sides of the island in the upper beach 

area. The dataloggers were placed at a depth of 60 cm, which 
was selected to approximate the bottom depth of green turtle 

and hawksbill nests.  

In addition, a temperature data logger was also used to 

record incubation temperatures of in-situ nests at Venu 

Island. The datalogger was placed in the center of the nest 

when a female sea turtle was encountered during nesting. 

The mean nest temperature during the middle third of the 

incubation period was calculated for the nest and compared 

to the pivotal temperature for green and hawksbill turtles to 

assess the effect of nest temperature on estimated hatchling 

sex ratio. The mean nest temperature during the middle third 

of incubation period represents an accurate method for 
predicting sex ratio in nests that do not experience large 

daily fluctuations in temperature (Georges et al. 1994; 

Georges et al. 2004). Additionally, it has recently been 

suggested that calculations regarding the middle third of 

incubation should be based on developmental rates taking 

into account daily temperature fluctuations, rather than 

being based on the total incubation duration (Girondot 

2014). In nests with minimal daily temperature fluctuation, 

incubation of the middle third based on the total incubation 

period should approximate incubation in the middle third 

based on developmental rates.  

Beach and incubation temperature data analysis 
The beach temperature data were downloaded using 

HOBOWARE software and exported to Microsoft Excel. 

The hourly sand temperatures were averaged to obtain mean 

daily sand temperatures. Sand temperatures were compared 

between the upper and lower beach zones at Lakahia and 

compared between west and east sections of the beach in 

Venu Island using a Mann-Whitney test. An IBM SPSS 

Statistic 20 was used to analyze data.  

To model the thermal reaction norm of embryonic 

development, nest temperature traces from the time of 

oviposition to the time of emergence were used using the R-
package, embryo growth (5.2, http://cran.r-project.org) 

(Girondot and Kaska 2014) in R version 3.1 (R Core Team 

2018). Meanwhile, to determine the TSP duration, the 

middle third of development for each nest was estimated 

from the model of embryonic growth. Consequently, sex 

ratio of hatchling produced was estimated by the mean 

temperature, weighted by embryonic growth, during the 

middle third of development for each nest (CTEW). 

RESULTS AND DISCUSSION 

Heavy metals contaminants 

In total, 6 sea turtle eggs were analyzed for heavy metals 

contaminants. In total, 8 elements were detected (Table 1). 
The mercury, cadmium, and arsenic content found in all 

eggs exceeded safety limits for human consumption, 0.5 

mg/kg (Table 1, Tapilatu et al. 2016; 2020). Other heavy 

metals, such as lead, zinc, manganese, iron, and copper, 

were present, but at concentrations below the established 

safety standard (Table 1). 

Beach temperatures 

Overall, beach temperatures in Lakahia fluctuated 

between 26.5o and 33.8oC (Table 2). A significant difference 

in daily mean beach temperature recorded between the upper 

and lower beach zones was detected in Lakahia (paired t-
test; t =-3.59, p = 0.008) in which the lower beach zone was 

warmer than the upper beach zone. Furthermore, mean 

beach temperatures differed among months at both zones 

(ANOVA; F = 12.83, p < 0.05), with temperatures in March 

being significantly warmer than other months (April-

September; Scheffe’s; p < 0.05). 

 

 



TAPILATU et al. – Heavy metals contaminants and nests temperatures of sea turtles 

 

4585 

Table 1. Assessment of heavy metals contaminants in a subset sample of sea turtle eggs collected from nests at Venu Island, Kaimana, 
West Papua, Indonesia 

 

Parameter 
Detection 

limit 

Subset sample green turtle 

eggs (unit: mg/kg) 

Subset sample hawksbill turtle 

eggs (unit: mg/kg) 
Analysis method 

Mercury (Hg) 0.004 0.421* 0.326* APHA, 2012 3112-B, 3030-E 
Cadmium (Cd) 0.40 2.12* 2.31* APHA, 2012 3111-B, 3030E 
Arsenic (As) 0.003 0.875* 0.569* APHA, 2012 3114-B, 3030E 

Lead (Pb) 0.23 <0.23 <0.23 APHA, 2012 3111-B, 3030-E 
Zinc (Zn) 0.67 70.36 58.83 Same above 
Manganese (Mn) 0.53 <0.53 0.80 Same above 
Copper (Cu) 1.2 4.33 3.65 Same above 
Iron (Fe) 5.00 15.65 42.78 APHA, 2012 3500-Fe-B 

Note: * Exceeding safety limits (Tapilatu et al. 2016; 2020) 
 
 

 
Table 2. Mean daily beach temperature (oC) at 60 cm at lower and upper beach zones in Lakahia recorded from 11 March-30 September 
2016 
 

Month 
Upper zone Lower zone 

Mean±sd Temperature range Mean±sd Temperature range 

March 31.5±0.5 30.4-32.2 32.8±0.6 31.8-33.8 
April 29.9±0.5 29.1-30.9 31.7±0.6 30.6-32.6 
May 30.6±0.3 30.1-31.2 32.7±0.4 31.8-33.5 
June 29.6±0.8 28.0-30.5 32.1±0.7 30.7-32.9 
July 28.0±0.4 27.4-28.8 30.0±0.7 29.0-31.4 
August 27.9±0.9 26.5-29.5 29.3±0.9 28.0-30.9 
September 30.1±0.9 28.7-31.7 31.3±1.1 29.8-33.2 

 

 
 
Table 3. Mean daily beach temperature (oC) at 60 cm at eastern and western beach sections in Venu Island recorded from 12 March-12 

September 2016 
 

Month 
Eastern section Western section 

Mean±sd Temperature range Mean±sd Temperature range 

March 30.0 ±0.1 29.6-30.2 29.2 ±0.4 28.1-29.7 
April 28.5 ±0.4 27.8-29.3 27.6 ±0.5 26.2-28.4 

May 28.3 ±0.2 27.8-28.7 28.5 ±0.6 26.3-29.3 
June 28.4 ±0.2 27.8-28.7 28.4 ±0.5 27.1-29.1 
July 27.3 ±0.5 25.9-27.8 27.6 ±0.4 26.7-28.1 
August 26.6 ±0.4 26.0-27.3 27.3 ±0.4 26.7-28.1 
September 26.9 ±0.2 26.7-27.2 27.7 ±0.2 27.3-27.9 

 

 

 

Overall, beach temperatures in Venu Island fluctuated 

between 25.9o and 30.2oC (Table 3). A significant difference 

in daily mean beach temperature monitored between eastern 

and western beach sections was detected in Venu Island 

(paired t-test; t =-2.59, p=0.04) in which overall the western 
section was warmer than the eastern section. In addition, 

mean beach temperatures differed among months at both 

zones (ANOVA; F = 9.83, p<0.05), with temperatures in 

March being significantly warmer than other months (April-

September; Scheffe’s; p<0.05). 

Beach and incubation temperatures at Venu Island 

The profiles of nest temperatures were grouped into three 

distinct phases: early, heating, and cooling (Figure 2). 

During March-April 2016, nest temperatures are likely to 

track the beach temperature at 60 cm for the early portion of 

incubation and then increase around 2-3oC above beach 

temperature at the third-trimester portion (Figure 2). The 

increase in incubation temperatures was relatively smooth 

with temperature changes within any given week being < 

0.9oC. 

Changes in incubation temperatures over a period of a 
few days were probably because of environmental 

parameters, such as rainfall. Nest temperature ascended 

slightly so that during the middle incubation period, 

incubation temperatures were 2-3oC distinctively warmer 

than the beach temperature. A rise in incubation temperature 

warmer than the surrounding beach temperature during the 

middle portion of incubation had been reported in sea turtle 

nests (Booth and Astill 2001; Broderick et al. 2001; Godley 

et al. 2002). This phenomenon is a result of the metabolic 

heat produced by developing embryos that increase 

significantly during the end stages of the incubation period. 
During the early phase, nest temperatures generally tracked 
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the beach temperatures at 27oC while the majority of nests 

initiated at 29oC. Furthermore, mean incubation 

temperatures recorded in the current study were typically 

above the pivotal temperature (PT, Figure 2) that has been 

reported for green turtles, such as in Costa Rica with 28oC 

(Morreale et al. 1982), the Mediterranean with 29oC (Kaska 

et al. 1998), and tend to average around 29oC (Mrosovsky 

1988) in all sea turtles. 

A female-biased sex ratio was estimated by the mean 

temperature during the middle third of development 
regardless of whether temperatures were weighted by 

embryonic growth or time. However, the mean temperature 

of nests during the TSP weighted by embryonic growth was 

higher (32.14°C±0.69) than when weighted by time 

(31.71°C±0.59). In addition, a female-biased sex ratio was 

also predicted for all but one nest when TSP length in this 

study was compared to TSP length where hatchling sex 

ratios were known (Miller and Limpus 1981). Therefore, it 

would be possible that a few intersex individuals may have 

been produced in these nests; however, the expected overall 

sex ratio would remain female-biased. 

Discussion 

Heavy metals contaminants in sea turtle eggs and the risks 

to human health 

This study determined the presence of certain metals 

elements. A study by Cortez-Gomez et al. (2018) on wild 

populations of olive-ridley turtles detected 7 inorganic 

elements such as arsenic, cadmium, copper, nickel, lead, 

selenium, and zinc. In addition, this study indicated that the 

mean concentration of heavy metals in sea turtle eggs has 

exceeded the threshold for heavy metals for egg products set  

by the Food and Drug Administration (FDA) Regulation 

No.5 of 2018. For example, the threshold for cadmium is 0.1 

mg/kg. In environmental assessments of heavy metals, 

cadmium and mercury warrant special attention because of 

their vast global distribution and high potential toxicity and 

carcinogenicity in humans. Data from numerous studies of 

these metals in sea turtles have indicated that their 

concentrations vary greatly by species, region, and tissue 

type. Cadmium, mercury, and lead have been documented in 

eggs and hatchlings of sea turtle in concentrations known to 
cause toxic effects in other vertebrates (Vazquez et al. 1996; 

Godley et al. 1999). 

Mercury. The World Health Organization (WHO) has 

adopted the United States Environmental Protection Agency 

(EPA) standardized levels for mercury and recommends that 

food with mercury concentrations >0.5 mg/kg should not be 

available for purchase. This suggests that the levels found in 

sea turtles (up to 8.15 ppm or mg/kg) could be hazardous to 

human health. Long-range atmospheric transport of mercury 

can result in the contamination of aquatic systems in 

otherwise pristine areas (Ullrich et al. 2001). Mercury enters 
aquatic systems largely as inorganic mercury and is 

microbially transformed into methylmercury, which is a 

potent neurotoxin with a strong tendency to biomagnify 

within food chains. Humans are exposed to mercury 

predominantly through food consumption, with fish and 

shellfish as the main dietary sources of methylmercury. 

Methylmercury is found in highest concentrations in the 

muscle of marine biotas, and cooking increases the mercury 

content (EPA 2001). The mercury content found in sea turtle 

eggs in this study exceeds safety thresholds for human 

consumption (0.5 mg/kg, BSN 2009).

 
 

 
 
Figure 2. Profile of beach and nest temperatures at Venu Island, Kaimana, West Papua, Indonesia 

PT 



TAPILATU et al. – Heavy metals contaminants and nests temperatures of sea turtles 

 

4587 

 

Mercury concentrations in sea turtles have been reported 

in a few studies from multiple locations such as in Europe 

(0.39±0.04 lg/g dw in liver; Davenport and Wrench 1990), 

in the Mediterranean (Storelli et al. 1998; median levels 

ranged from below detection level [BDL] to 2.41 lg/g dw in 

Godley et al. 1999), and in Japan (mean of 1.51±2.93 lg/g 

wet weight in liver; Sakai et al. 1995) were higher than other 

seafood. Fetuses and infants appear to be at the highest risk 

for methylmercury toxicity in which methylmercury readily 
passes through the placenta and breast milk (Clarkson 1993; 

Grandjean et al. 1995). Human health risks assessments 

from methylmercury in fish using epidemiological studies 

indicated that even relatively low level of exposures may be 

harmful to fetuses (Clarkson 1990). Negative effects on the 

fetus (i.e. psychomotor retardation) would be estimated at 

daily intakes above 36 lg Hg/day for a 60 kg pregnant female 

(Clarkson 1990)-as such consumption of only 4g of sea 

turtle tissue would exceed this level.  

Cadmium. The maximum temporary tolerable weekly 

intake (PTWI) of cadmium recommended by WHO for 
people weighing 60 kg is 0.42 mg/kg (0.42 ppm) (WHO 

2003). The mean cadmium concentration in most food 

ranges from 0.01 to 0.05 ppm (WHO 2003); however, the 

high concentrations of cadmium found in sea turtle tissues 

(up to 652 ppm) exceed this level by over three orders of 

magnitude. Consequently, individuals with lower body 

weights, in particular children group, are at an increased risk 

of exceeding the PTWI. The cadmium levels found in sea 

turtle eggs in this study exceeded established safety 

standards for seafood products (0.5 mg/kg, BSN 2009) and 

may warrant concern for people who consume sea turtle 
tissue with high cadmium concentrations in the Kaimana 

region. In northwestern Mexico, the concentrations of 

cadmium measured in kidney tissue of green turtles (652 

lg/g dry weight [dw]) and olive ridley turtles (274 lg/g dw) 

were the highest reported for these species (Gardner et al. 

2006). Elevated cadmium concentrations were also 

measured in sea turtles from Japan (mean of 39.4±16.2 lg/g 

wet weight in Sakai et al. 1995) (Sakai et al. 2000; Anan et 

al. 2001), Europe (up to 243 lg/g dw) (Caurant et al. 1999), 

and Australia (mean of 28.3 lg/g wet weight) (Gordon et al. 

1998). These concentrations are higher than the levels 

generally reported for other marine vertebrates (Beck et al. 
1997; Cardellicchio et al. 2002; Mendez et al. 2002). In 

addition, Bicho et al. (2006) measured heavy metals in green 

turtle livers and eggs. The concentrations found in their 

study were higher than levels reported in other sites in the 

world. For example, 1408±814 ppm wet weight for 

cadmium. Gordon et al. (1998) found that cadmium levels in 

the livers of stranded green turtles in Australia were higher 

significantly than the levels reported in commercial seafood 

products. In addition, heavy metal of cadmium detected in 

green turtle eggs was significantly high on Peninsular 

Malaysia with a concentration of 0.61 mg/kg (Joseph et al. 
2014). Roe et al. (2011) examined the same thing in 

leatherback turtle (D. coriacea) in Playa Grande found 

cadmium concentrations between 0.3-1.6 mg/kg. Such 

studies indicate that heavy metals are not only found in the 

eggs of green and hawksbill turtles, but also those of 

leatherback turtles at other nesting beaches.  

Arsenic. Arsenic levels found in sea turtle eggs in this 

study exceeded established safety standards for seafood 

products (0.5 mg/kg, BSN 2009) and may warrant concern 

for people who consume sea turtle tissue in the Kaimana 

region. In general, the high concentration of heavy metals 

(Hg, Cd, and As) compared to the concentration of other 

inorganic elements in this study was thought to be because 
adult sea turtles in this area have ingested these metals and 

the eggs are contaminated through the sequestration process. 

According to Orłowski et al. (2017), the sequestration 

process is a process of eggshell transporter ions which 

should be useful for transferring one type of ion. However, 

because the presence of other similar ions, they would be 

inadvertently transferred to the eggshell via transporter ions.  

In addition to significantly higher concentrations of 

heavy metals, other metal substances were found below the 

threshold. For example, lead detected in turtle eggs in 

Kaimana were lower than a study by Shintana et al. (1980) 
on eggs of olive ridley (L. olivacea) in Pariaman Beach with 

concentrations of heavy metal lead found in the range of 

0.34-6.8 mg/kg, then in Joseph et al. (2014) who studied 

green turtle (C. mydas) eggs on the coast of Peninsular 

Malaysia with the concentration of heavy metal lead found 

9.46 mg/kg. 

Nest temperatures 

The determination of primary sex ratios is critical in the 

scope of global climate change where populations of 

organisms with temperature-dependent sex determination 

(TSD) would be sexed with fluctuation in ambient 
temperature (Stubbs et al. 2014; dei Marcovaldi et al. 2016). 

Because empirical estimation of the in-situ sex ratio is 

logistically challenging, several proxies have been applied 

to estimate the main sex ratio of turtle populations 

worldwide (Girondot et al. 2010; Wyneken and Lolavar 

2015). Considering thermal reaction norms for embryo 

developmental rates, at least three models had been 

developed for estimating sex ratios while calculating 

proxies. The model used in this study was CTEW (middle 

third of the incubation period) (Fuentes et al. 2017). This 

model has also been used by Stubbs et al. (2014) and 

Tapilatu and Ballamu (2015) in a sex ratio study of sea 
turtles. 

It is well understood that the thermal tolerance for sea 

turtle embryos ranges between 25o and 35oC (Ackerman 

1997) or ranges between 24o and 32oC (Yntema and 

Mrosovsky 1982). In addition, the pivotal temperatures tend 

to cluster around 29oC (Mrosovsky 1994). The pivotal 

temperature varies according to species and location. For 

example, the pivotal temperatures for leatherbacks were 

estimated at 29.25-30.50oC in Suriname and French Guiana 

(Mrosovsky et al. 1984; Dutton et al. 1985; Godfrey et al. 

1996; Chevalier et al. 1999), in Malaysia (Chan and Liew 
1995), and Costa Rica (Binckley et al. 1998). Meanwhile, 

pivotal temperature in laboratory conditions for green turtles 

on Ascension Island was 29.3oC (Tilley 2019). The beach 

temperatures observed at Venu Island and Lakahia may be 
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within the thermal tolerance of turtle embryos, which results 

in the high hatching successes observed in clutches on Venu 

Island. The ideal sand temperature on both beaches could 

possibly be a contributing factor to the higher egg survival 

rates.  

Mrosovsky (1994) states that sexual differentiation in sea 

turtles is strongly influenced by ambient incubation 

temperature or TSD. It has been shown specifically that the 

sustained temperature to which the embryo is exposed 

during the middle trimester of incubation determines the 
eventual gonadal differentiation and sex of the hatchling 

(Wibbels 2003). Overall mean beach temperatures at two 

beach sections in Venu Island in 2016 were typically near 

the pivotal temperature for sea turtles for the nesting season 

in 2016. In addition, in the sampled nests monitored with a 

datalogger, mean daily temperatures of in situ nests during 

the middle third period of the incubation period were above 

the pivotal temperature suggesting female-biased sex ratios. 

Thus, overall these results support the hypothesis that 

female-biased sex ratios may dominate in Venu Island. 

Female-biased sex ratios were also observed at other nesting 
beaches in the Bird’s Head Seascape (Tapilatu and Tiwari 

2007; Tapilatu 2014; Tapilatu and Ballamu 2015; Tapilatu 

2017). The result revealed the impact of metabolic heating 

on incubation temperatures.  

Nest temperature is determined by the surrounding 

temperature of the sand and the amount of metabolic heat 

from the developing embryo (Ackerman 1997). During the 

early part of the incubation period, the temperature of the 

nest is similar to the temperature of the surrounding sand. 

Then the metabolic heat production from the embryo begins 

to warm the nest above the surrounding sand temperature at 
the beginning of the last third of incubation. As such, the 

time of hatching the nest temperature is 0.25-2.95°C warmer 

than the beach temperature. A rise in incubation temperature 

above the surrounding beach temperature due to metabolic 

heat generated by the developing embryos during the last 

third of incubation duration is commonly reported in sea 

turtle nests. However, the increase in nest temperature due 

to metabolic heating may not affect sex ratios because sex is 

determined during incubation in the middle third period 

(Yntema and Mrosovsky 1982; Merchant-Larios et al. 1997; 

Wibbels 2003). 

In conclusion, it is strongly recommended that the 
harvesting of turtle eggs and adults and juveniles of all four 

species of sea turtles at Kaimana be totally prohibited. The 

chemical contamination found in the eggs of C. mydas and 

E. imbricata at Venu Island is thought to assist sea turtle 

conservation initiatives in the area. The health risk from 

consumption of contaminated eggs has the potential to 

reduce the number of eggs illegally collected. A decrease in 

the number of harvested eggs may allow a stable or even an 

increase in sea turtle population in Kaimana. Despite the 

availability of sources of other animal protein (i.e. fish and 

deer) available to coastal communities in Kaimana, the 
cultural perception that turtle eggs are of high nutritional 

value has driven high consumption rates. One of the 

significant challenges in conserving sea turtles in Kaimana 

is to minimize the need for turtle eggs in a cultural context. 

This would be achieved by education and awareness 

programs that highlight the potential health risks of 

consuming sea turtle eggs, which contain high 

concentrations of toxic compounds. If implemented 

effectively, the programs are expected to reduce the 

collection of sea turtle eggs for human consumption and thus 

contribute significantly to sea turtle conservation in 

Kaimana. 

In addition, conservation programs at the prime nesting 

habitat for green and hawksbill turtles on the small islands 

of Kaimana, such as Venu Island, should be intensified to 
reverse the decline and increase population size of all 

species of sea turtle species. Community support and 

involvement are crucial for lasting protection of marine 

turtles in Kaimana. It is recommended that education and 

outreach to raise awareness about the need for marine turtle 

conservation to be implemented in surrounding 

communities in Kaimana. Officers and community members 

in Kaimana were given materials to improve their 

understanding of sea turtle conservation. This activity will 

contribute to the development of an appropriate marine turtle 

management initiative for implementation by the Kaimana 
government. 

Finally, to understand the connections between the 

foraging and nesting habitats and pelagic phase of sea turtles 

in Kaimana and their relationships to inorganic elements, 

future studies to seek the migration pathways and movement 

patterns using satellite transmitters are highly 

recommended. This would prove valuable in identifying 

priority habitat areas for oceanic marine-protected areas 

designed to protect the sea turtles during their pelagic 

migrations and in offshore mating and foraging habitats. 
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