TEM JOURNAL ### TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS Journal of Association for Information Communication Secteology Education and Science TEM ## JOURNAL TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS - --> Home - · > Instructions - --> Submit Article - --> Editorial Board - --- Archives - --> Contact Open Access and copyright **Publication Ethics and Publication Malpractice Statement** WEB OF SCIENCE **OPEN ACCESS** TEM Journal, Vol.11, No.1, February 2022: Title: Issues in the Disclosure of Financial Information by Multinational Enterprises Authors: Svetlozar Stefanov, Daniela Georgieva, Julian Vasilev DOI: 10.18421/TEM111-01 Google scholar GERMAN NATIONAL LIBRARY OF SCIENCE AND TECHNOLOGY Central and Eastern European Online Library Title: Diagnostics of the State of Safety-Oriented Enterprise Management System Using Neural Networks Authors: Nataliia Havlovska, Hanna Koptieva, Olena Babchynska, Yevhenii Rudnichenko, Viktor Lopatovskyi, Vadym Prytys DOI: 10.18421/TEM111-02 | abstract | full text | how to cite | Title: Modeling of Creep Effect in DMSP-5 Fluidic Muscle Authors: Monika Trojanová, Alexander Hošovský, Tomáš Čakurda DOI: 10.18421/TEM111-03 Title: Linear Differential Driven Wheel Mobile Robot Based on MPU9250 and Optical Encoder Authors: Ilham Rustam, Nooritawati Md Tahir, Ahmad Ihsan Mohd Yassin, Nurbaiti Wahid, Abdul Hafiz Kassim DOI: 10.18421/TEM111-04 | abstract | full text | how to cite | Title: The Motivation and Characteristic of Students Studying Helping Major with Specialization on Special Pedagogic and Social Work Authors: Lukáš Stárek DOI: 10.18421/TEM111-05 | abstract | full text | how to cite | Title: Twitter Sentiment Analysis and Expert Ratings of Initial Coin Offering Fundraising: Evidence from Australia and Singapore Markets Authors: Anchaya Chursook, Ahmad Yahya Dawod, Somsak Chanaim, Nathee Naktnasukanjn, Nopasit Chakpitak DOI: 10.18421/TEM111-06 | abstract | full text | how to cite | Title: Development and Design of a Machine Using Standard Aluminium Profiles Authors: Muamer Špago, Adis J. Muminović, Nedim Pervan, Mirsad Trobradović, Vahidin Hadžiabdić, Muamer Delić DOI: 10.18421/TEM111-07 abstract | full text | how to cite Title: Blockchain Technology Implementation for Medical Data Management in Malaysia: Potential, Need and Challenges Authors: Fariha Anjum Hira, Haliyana Khalid, Siti Zaleha Abdul Rasid, Shathees Baskaran, Alam Md Moshiul DOI: 10.18421/TEM111-08 | abstract | full text | how to cite | Title: Calculation of Electric Circuits Using the Fast Kirchhoff Method Authors: Viliam Ďuriš, Aleksey G. Chertanovskiy, Sergey G. Chumarov, Aleksander V. Kartuzov DOI: 10.18421/TEM111-09 | abstract | full text | how to cite | Title: Large Comparative Study of Recent Computational Approach in Automatic Hate Speech Detection Authors: Wesam Shishah, Ricky Maulana Fajri DOI: 10.18421/TEM111-10 | abstract| full text | how to cite | Title: Development of Flipped Classroom using Cloud-Based Learning and Board Games Model to Enhance Critical Thinking Skills Authors: Chawin Chukusol, Pallop Piriyasurawong DOI: 10.18421/TEM111-11 | abstract | full text | how to cite | Title: Random Forest Regression to Predict Catalyst Deactivation in Industrial Catalytic Process Authors: Wisnu Hafi Hanif, Fergyanto E Gunawan DOI: 10.18421/TEM111-12 | abstract| full text | how to cite | Title: Mobile Marketing in Business Sustainability: A Bibliometric Analysis Authors: Wan Mohd Hirwani Wan Hussain, Norzalita Abdul Aziz DOI: 10.18421/TEM111-13 | abstract| full text | how to cite | Title: Transforming Scientific Results into Educational Materials - Added Value of a Research Project Authors: Yanita Chernogorova, Turgay Kalinov, Nikolay Dukov, Kristina Bliznakova, Alexander Zlatarov, Nikola Kolev, Zhivko Bliznakov DOI: 10.18421/TEM111-14 | abstract| full text | how to cite | Title: A Systematic-Functional Approach in Managing Innovative Development of Construction Enterprises in Ukraine Authors: Iryna Gontareva, Mainka Marcel Kurt, Oleksandr Dorokhov, Roman Rusin-Grinik, Nazar Galayko DOI: 10.18421/TEM111-15 | abstract| full text | how to cite | Title: CRM Systems for Small Businesses: The Role in the Digital Transformation and New **Opportunities During COVID-19** Authors: Lilia Matraeva, Ekaterina Vasiutina, Nataliya Korolkova DOI: 10.18421/TEM111-16 | abstract| full text | how to cite | Title: The Extraction of Near-Shore Bathymetry using Sentinel-2A Satellite Imagery: Algorithms and Their Modifications Authors: Abdi Sukmono, Sentanu Aji, Fauzi Janu Amarrohman, Nurhadi Bashit, Lutfi Rangga Saputra DOI: 10.18421/TEM111-17 | abstract| full text | how to cite | Title: Identification of Customer's Preferences as One of the Main Activities of Destination Management Authors: Miriam Garbarova, Lukas Vartiak DOI: 10.18421/TEM111-18 | abstract| full text | how to cite | Title: Proposed Solution for Adaptation of the Block in TPP Bitola using Gas Turbine Combined Cycle Authors: Blagoj Dimovski, Sevde Stavreva, Cvete Dimitrieska, Igor Andreevski DOI: 10.18421/TEM111-19 | abstract| full text | how to cite | Title: Length-weight Relationships and Condition Factor of Chub (Squalius cephalus, Linnaeus, 1758) from the Area of Northeastern Bosnia and Herzegovina Authors: Eldar Tanović, Edina Hajdarević, Avdul Adrović, Isat Skenderović, Alen Bajrić, Amela Tanović DOI: 10.18421/TEM111-20 | abstract | full text | how to cite | Title: Study of Amplifier Operating Point to Improve Phonocardiogram Signal Representation in a Custom-made Electronic Stethoscope Authors: Juli Astono, Heru Kuswanto, Sumarna Sumarna, Wipsar Sunu Brams Dwandaru DOI: 10.18421/TEM111-21 | abstract | full text | how to cite | Title: Implementation of Simulation in the Design of Robotic Production Systems Authors: Naqib Daneshjo, Peter Malega, Jana Hlubeňová, Pavol Štuller DOI: 10.18421/TEM111-22 | abstract| full text | how to cite | Title: Impact of Roadside Advertising Structures on Traffic Safety Authors: Suada Dacić, Amel Kosovac, Adnan Omerhodžić DOI: 10.18421/TEM111-23 | abstract| full text | how to cite | Title: Application of a Six-Step Bionic Strategy for Achieving Product Segmentation Authors: Elena Angeleska, Kristijan Vasilevski, Ile Mircheski, Sofija Sidorenko DOI: 10.18421/TEM111-24 | abstract | full text | how to cite | Title: Social Customer Relationship Management: A Process Model Approach to Develop a Closer Relationship Between Customer and Company Authors: Gamal Kassem, Evan asfoura, Stefan Willi Hart, Sulaiman Althuwaini DOI: 10.18421/TEM111-25 | abstract| full text | how to cite | Title: Implementing Item Response Theory (IRT) Method in Quiz Assessment System Authors: Viska Mutiawani, Al Misky Athaya, Kurnia Saputra, Muhammad Subianto DOI: 10.18421/TEM111-26 | abstract| full text | how to cite | Title: Segmented Actor-Critic-Advantage Architecture for Reinforcement Learning Tasks Authors: Martin Kaloev, Georgi Krastev DOI: 10.18421/TEM111-27 | abstract | full text | how to cite | Title: The Impact of Reading for Pleasure - Examining the Role of Videos as a Tool for Improving Reading Comprehension Authors: Silvia-Maria Chireac, Eva Morón Olivares, Anna Devís Arbona DOI: 10.18421/TEM111-28 | abstract| full text | how to cite | Title: Professional Skills Development Affecting Organizational Learning and Corporate Performance: An Empirical Study in Thailand Authors: Alisara Saramolee, Yuttachai Hareebin, Sunthorn Boonkaew, Somnuk Aujirapongpan, Jaturon Jutidharabongse DOI: 10.18421/TEM111-29 | abstract | full text | how to cite | Title: The Textbook Dilemma: Digital or Print? Evidence from a Selected US University Authors: Kavita Chavali, Raghava R. Gundala DOI: 10.18421/TEM111-30 | abstract| full text | how to cite | Title: Use of Generative Design Tools in the Production of Design Products using 3D Printing Technology Authors: Martin Pollák, Jozef Török DOI: 10.18421/TEM111-31 | abstract| full text | how to cite | Title: Characterization of Anxiety Towards Mathematics in Middle School Students: Empirical Evidence Authors: Arturo García-Santillán, Lizzeth Navarro-Ibarra, Esmeralda Tejada-Peña DOI: 10.18421/TEM111-32 | abstract| full text | how to cite | Title: WSNet - Convolutional Neural Networkbased Word Spotting for Arabic and English **Handwritten Documents** Authors: Hanadi Hassen Mohammed, Nandhini Subramanian, Somaya Al-Maadeed, Ahmed Bouridane DOI: 10.18421/TEM111-33 | abstract| full text | how to cite | Title: A Study on Social Capital of Indonesian Entrepreneurs Authors: Nisa Novia Avien Christy, Radna Andi Wibowo, Ming-Chang Wu DOI: 10.18421/TEM111-34 | abstract | full text | how to cite | Title: Bibliometric Study of Educational Production in Iberoamerica Authors: Alexander Maz-Machado, Astrid Cuida, Pilar Gutiérrez-Arenas, Cristina Pedrosa-Jesús DOI: 10.18421/TEM111-35 | abstract | full text | how to cite | Title: Sports Research Trends in the Last 10 Years: Information to Librarians, Researchers, and Policy Makers Authors: Nurhasan Nurhasan, Binar Kurnia Prahani, Nadi Suprapto, Beni Setiawan, Utama Alan Deta, Muchamad Arif Al Ardha DOI: 10.18421/TEM111-36 | abstract| full text | how to cite | Title: Convolutional Neural Networks for Multi-scale Lung Nodule Classification in CT: Influence of Hyperparameter Tuning on Performance Authors: Jorge Hernández-Rodríguez, Francisco-Javier Cabrero-Fraile, María-José Rodríguez-Conde DOI: 10.18421/TEM111-37 | abstract | full text | how to cite | Title: Risk-Return Trade-off and Volatility Characteristics in the Indian Stock Market Authors: Manickam Tamilselvan, Srinivasan Palamalai, Magesh Kumar, Jayakumar Aswathaman, Manjula Veerabhadrappa DOI: 10.18421/TEM111-38 | abstract| full text | how to cite | Title: Comparison of Decision Tree Classification Methods and Gradient Boosted Trees Authors: Arif Rinaldi Dikananda, Sri Jumini, Nafan Tarihoran, Santy Christinawati, Wahyu Trimastuti, Robbi Rahim DOI: 10.18421/TEM111-39 | abstract| full text | how to cite | Title: Examination of
Surface Quality after Drilling of Wood Plastic Composite Authors: Zuzana Mitaľová, František Botko, Juliána Litecká, Dušan Mitaľ DOI: 10.18421/TEM111-40 | abstract| full text | how to cite | Title: Unerroric Automatic Control of Civil Hydroacousticer's Working Quality on Board Authors: Adeliya Yu. Burova, Vitaly V. Kabakov DOI: 10.18421/TEM111-41 | abstract | full text | how to Title: A Mathematical Model for Risk Assessment of Social Engineering Attacks Authors: Andrei Şandor, Gabriela Tont, Eduard Simion DOI: 10.18421/TEM111-42 | abstract | full text | how to cite | Title: Management of the Development of the Innovative Potential of the Region Authors: Kateryna Andriushchenko, Anastasiia Liezina, Svitlana Vasylchak, Mykhailo Manylich, Tetiana Shterma, Uliana Petrynyak DOI: 10.18421/TEM111-43 Title: The Development of Comic Book as Marker of Augmented Reality to Raise Students' Critical Thinking Authors: Insar Damopolii, Fridolin Febrianto Paiki, Jan Hendriek Nunaki DOI: 10.18421/TEM111-44 | abstract | full text | how to cite | Title: Controlling Tools Use in Business Processes Managementy Authors: Adriana Csikósová, Katarína Čulková, Mária Janošková DOI: 10.18421/TEM111-45 | abstract | full text | how to cite | Title: Assessment of the Efficiency of Employment of the Communities' Resource Potential using Different Approaches Authors: Roman Khirivskyi, Ihor Yatsiv, Liudmyla Petryshyn, Tymofii Pasichnyk, Lesia Kucher, Inna Irtyshcheva DOI: 10.18421/TEM111-46 | abstract| full text | how to cite | Title: Designing Physics Hands-On Experiment for Distance Learning Using Arduino and **Block-Based Programing Language** Authors: Elisabeth Pratidhina, Dadan Rosana, Heru Kuswanto DOI: 10.18421/TEM111-47 | abstract | full text | how to cite | Title: Robotics and Education: A Systematic Review Authors: Itsaso Arocena, Asier Huegun-Burgos, Itziar Rekalde-Rodriguez DOI: 10.18421/TEM111-48 | abstract| full text | how to cite | Title: Spatial Ability and Geometric Thinking of the Students of Teacher Training for Primary Education Authors: Gabriela Pavlovičová, Veronika Bočková, Katarína Laššová DOI: 10.18421/TEM111-49 | abstract| full text | how to cite | Title: Web-Based Virtual Laboratory Development for Basic Practicums in Science and Technology Authors: Sriadhi Sriadhi, Abdul Hamid, Restu Restu DOI: 10.18421/TEM111-50 | abstract | full text | how to cite | Title: The Study on Energy Independence (Autonomy) of an Agricultural Enterprise Assurance Authors: Natalia Pryshliak, Natalia Zdyrko, Andrii Shynkovych, Natalia Koval DOI: 10.18421/TEM111-51 | abstract| full text | how to cite | Title: The Performance of Thai Sign Language Recognition with 2D Convolutional Neural Network Based on NVIDIA Jetson Nano Developer Kit Authors: Eakbodin Gedkhaw DOI: 10.18421/TEM111-52 | abstract| full text | how to cite | Title: Statistical Anxiety and Achievement among University Students Authors: Siti Mistima Maat, Norhatta Mohd, Che Nidzam Che Ahmad, Marzita Puteh DOI: 10.18421/TEM111-53 | abstract | full text | how to cite | Title: Design and Implementation Data Logger with Integrated Circuit Multiplexer for Solar Panel Park Authors: Ali Basrah Pulungan, Lovely Son, Syafii Syafii, Syamsul Huda, Ubaidillah Ubaidillah DOI: 10.18421/TEM111-54 | abstract | full text | how to cite | Title: Full-time versus Distance Learning of Statistics Authors: Danka Lukáčová DOI: 10.18421/TEM111-55 | abstract | full text | how to cite | Title: Educational Transformation with Virtual Classroom: Integrated between TTF and Social Motivation Authors: Nantinee Soodtoetong, Montean Rattanasiriwongwut DOI: 10.18421/TEM111-56 | abstract| full text | Title: IT Blueprint for an Effective Online Learning System with a Blended Approach for Upper Secondary Education System During COVID-19 Pandemic Authors: Arief Ramadhan, Satrio Pradono Suryodiningrat, Harco Leslie Hendric Spits Warnars DOI: 10.18421/TEM111-57 Title: Improving the Accuracy of Multi-Valued Datasets in Agriculture Using Logistic Regression and LSTM-RNN Method Authors: Abdalla Alameen DOI: 10.18421/TEM111-58 | abstract | full text | how to cite | Engineering Education and Learning outside the Classroom through MOOCs: Student Assessment Title: Authors: Olga Tarasova, Aleksei Bykov, Tetiana Likhouzova, Irina Petunina DOI: 10.18421/TEM111-59 | abstract | full text | how to cite | Title: Cost and Benefit of E - Speed Supervisor In Express Bus Authors: Shafie Sidek, Neelamehan Manickiam, Kamarulzaman Ismail, Amer Hamzah Jantan DOI: 10.18421/TEM111-60 | abstract | full text | how to cite | Title: Creating a Simulation Environment for the Micromouse Authors: Martin Komák, Elena Pivarčiová DOI: 10.18421/TEM111-61 | abstract | full text | how to cite | Title: Hard Discount Formats Service Quality Assessment Model in Colombia Authors: Juan M. Andrade, Fredy Velez, Elías Ramírez DOI: 10.18421/TEM111-62 | abstract| full text | how to cite | Home Instructions for the Authors Submit paper Editorial Board Archives Contact Publication Ethics and Publication Malpractice Statement Copyright © 2022 UIKTEN Copyright licence: All articles are licenced via Creative Commons CC BY-NC-ND 4.0 licence ### TEM ## JOURNAL ISSN: 2217-8309 e-ISSN: 2217-8333 e-ISSN: 2217-8333 ### **TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS** Journal of the Association for Information Communication Technologies, Education and Science · · > Home · · > Instructions ---> Submit Article --> Editorial Board · · > Archives · · > Contact Publication Ethics and Publication Malpractice Statement Open Access and copyright # Scopus® Clarivate Web of Science Vec Central and Eastern European Online Library TEM JOURNAL - Technology, Education, Management, Informatics **Editorial Board:** Editor-in-Chief: Prof. dr Camil Sukic Lector: Irma Halilovic **Members:** Prof. dr Keiichi Kaneko (Tokyo University of Agriculture and Technology | TUAT · Department of Computer and Information Sciences, Tokyo, Japan) Prof. dr Klaus Tochtermann (ZBW - Leibniz Information Centre for Economics, Germany) Prof. dr Gillich Gilbert-Rainer (Eftimie Murgu University in Resita, Department of Mechanical Engineering, Romania) Samir Khatir, PhD (Technologiepark, Ghent University, Belgium) Prof. dr Álvaro Rocha (University of Lisbon - ISEG, Lisbon, Portugal) Asst. Prof. Enes Sukic (UIKTEN - Association for Information Communication Technology Education and Science, Serbia) Erica Magagnini, PhD (Università Politecnica delle Marche, Italy) Maria José Sousa, PhD (ISCTE-Instituto Universitario de Lisboa, Portugal) Prof. Dr. Khaled Shaalan (Faculty of Engineering & IT, The British University in Dubai, UAE) Asst. Prof. Isaac Lera Castro (University of the Balearic Islands, Department of Mathematic and Computer Sciences, Spain) Le Thanh Cuong, PhD (Faculty of civil engineering, Ho Chi Minh City Open University, Vietnam) Prof. dr Borut Buchmeister (University of Maribor, Slovenia) Ing. Darina Dupláková, PhD (Faculty of Manufacturing Technologies with a seat in Prešov, Technical University of Košice, Slovakia) Stamatis Papadakis, PhD (Faculty of Education, University of Crete, Crete, Greece) Assoc. Prof. dr. Kuaanan Techato (Faculty of Environmental Management, Prince of Songkla University, HatYai, Songkhla, 90110, Thailand) Prof. dr Bekim Fetaji (University Mother Teresa, Faculty of Informatics, Skopje, North Macedonia) Asst. Prof. Dominik Zimon (Rzeszow University of Technology, Department of Management Systems and Logistics, Poland) Prof. dr Jeroslav Zivanic (University of Kragujevac, Serbia) Prof. dr Petre Lucian Ogrutan (Transilvania University of Brasov, Faculty of Electrical Engineering and Computer Science, Romania) Prof. dr Danijela Milosevic (University of Kragujevac, Serbia) Prof. dr Marko Hölbl (University of Maribor, Faculty of Electrical Engineering and Computer Science (FERI), Slovenia) Prof. dr Aleksandar Kupusinac (University of Novi Sad, Faculty of Technical Sciences, Serbia) Prof. dr Marina Klacmer Calopa (University of Zagreb, Faculty of Organization and Informatics (FOI), Croatia) Home Instructions for the Authors Submit paper Editorial Board Archives Contact Publication Ethics and Publication Malpractice Statement Copyright © 2012-2022 UIKTEN, All Rights reserved Copyright licence: All articles are licenced via Creative Commons CC BY-NC-ND 4.0 licence # The Development of Comic Book as Marker of Augmented Reality to Raise Students' Critical Thinking Insar Damopolii, Fridolin Febrianto Paiki, Jan Hendriek Nunaki Universitas Papua, Gunung Salju Street, Manokwari, Indonesia Abstract - Critical thinking (CT) in biology is important for future learners. The examination results from previous studies are complemented by the author's initial findings showing that students' CT is not well developed. This research develops comic books as Augmented Reality (AR) markers to raise students' CT. ADDIE model is used in this research. The scaletest was limited to twenty rural high school students. Validation sheets, CT tests, and questionnaires were used to collect data. The research results show that comic books and AR are valid based on expert evaluation. Limited scale trial of improvement in student CT (n-gain = 0.38). 75% of students' CT has developed well at the end of the lesson. There is a significant difference between pre-CT and post-CT (p < 0.05). Students respond excellently to the use of comic books as AR markers in learning. This research concludes that comic books and AR are valid and their use in learning during a pandemic improve students' CT. can Recommendations for future research are trials on a large scale to determine the strong effectiveness of using comic books as AR markers. *Keywords* – augmented reality, comic, critical thinking, science learning. DOI: 10.18421/TEM111-44 https://doi.org/10.18421/TEM111-44 Corresponding author: Insar Damopolii, Universitas Papua, Gunung Salju Street, Manokwari, Indonesia. Received: 14 November 2021. Revised: 05 February 2022. Accepted: 11
February 2022. Published: 28 February 2022. Email: i.damopoli@unipa.ac.id © BYNC-ND © 2022 Insar Damopolii, Fridolin Febrianto Paiki & Jan Hendriek Nunaki; published by UIKTEN. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License. The article is published with Open Access at https://www.temjournal.com/ ### 1. Introduction Critical thinking (CT) is a skill that has to be empowered in the curriculum in Indonesia. CT is one of four other skills: communication, collaboration, and creativity (called 4Cs). In Indonesia, the CT of 202 high school students has been measured [1]. The results of their measurements revealed that there were 50.49% of students with less developed CT. Critical thinking is connected with students' cognitive abilities. The low CT is considered due to the students' cognitive abilities being weak and not being empowered. During school closures in the pandemic era it has caused students' CT not to develop properly. The 2021 publication by Fajari and Chumdari [2] found that 86% of students did not meet class standards when they took the CT test. This research also found that 44% of students have less developed CT because they were below the average class score. Preliminary studies have been carried out to identify students' CT during the pandemic, especially in biology class. The findings showed that the mean CT of the students is 41.6. Preliminary findings also showed that 89% of students did not develop well in their CT. Empowerment of students' CT can be supported by providing learning resources in accordance with current conditions. Digital-based innovative and creative learning resources can improve students' cognitive and support them to succeed [3]. Digital learning resources have been widely used to support online learning during a pandemic. The abundant learning resources apparently cannot help clarify a learning material but cause a burden on memory, weaken the learning process, and decrease students' critical thinking skills. Selecting and sorting out the types of learning resources is vital to empower students' CT. Science classes must be oriented to managing students' critical thinking with the aim of being critical to confront fake news being circulated [4]. The low level of students' CT during the pandemic was caused by a poor internet connection to support them in conducting discussions as in face-to-face learning. Students must be able to obtain information from a media that can be trusted. Puig et al. [4] revealed that in order to encourage students' CT, learning content and resources must support the development of CT. The author argues that teachers must provide reliable information by providing accurate learning media and scientific facts. Nowadays, technology in education must adapt to the development and needs of students so that they can express themselves and optimize their cognitive. During the pandemic, science teachers were challenged to use online learning technology to keep their students learning. Digital technology and online learning have shifted physical learning, which was implemented before the pandemic crisis. Technology and digital learning have made students learning and communicating virtually [5]. The challenge in education is to provide learning resources compatible with the latest educational conditions. Digital products used in online learning must be in accordance with the available infrastructure so that students' performance can be optimized [6]. The limitations of laboratory space can be overcome with technology so that students can still observe objects as they did initially. Augmented reality (AR) enhances traditional learning resources that are difficult to obtain through real experience [7], [8]. The research conducted by Weshah et al. [9] aims to overcome the impracticality of the learning process and the inability of students to understand concepts by creating AR for android-based smartphones. Their findings reveal that AR creates conditions where students (users) and virtual objects are in the same physical space so that students' inability understand abstract concepts can be overcome. Teachers believe that their students can be engaged and enjoy online learning using AR integrated books [10]. These researchers used AR books to evaluate their students. The obstacle faced is that AR books require internet access, and some students do not register for internet data packages. The researchers suggest that the use of the application must be preceded by the need and ability of its users so that they can gain access. Hedberg et al. [11] reviewed articles published over seventeen years (2000 – 2017) that focus on AR. The data shows that the use of AR is more dominant at the university and elementary school levels. Only 8.22% of the articles reviewed conducted research on the use of the AR at the high school level. This review also found that more of the content studied was on natural science topics and more focused on increasing students' motivation and involvement in learning. They did not display the data on articles that are discussing the improvement of students' CT. Research for high school students' CT using AR is necessary because there are few focuses on this. A review article in 2019 by Arici et al. [12] on the use of the AR in science reveals that AR is widely used in mobile devices, and studies are more dominant in its impact on student achievement and attitudes motivation in science. Only one (1.61%) of the total reviewed articles studied CT. The results of this study prove that CT has not been widely studied in scientific research using AR. The article in 2020 by Sahin and Yilmaz [13] found that science material full of abstract concepts has caused a gradual decline in student interest and student achievement. This researcher provides a solution through research in an AR-based booklet design and compares it with textbooks in conventional learning in science classes. The shape of the three-dimensional object displayed from the booklet is emitted onto the board to be observed by students. They found no anxiety in students, and students' achievement and attitudes towards science are increased. The latest article in 2021 by Faridi et al. [14] has created an AR-based learning environment to improve students' CT in physics. They used a marker to detect the camera from the AR application and display a three-dimensional shape. Students' CT was measured at the end of the lesson and compared with the non-AR group. The research results show that AR has an impact on students' CT because students are involved in learning activities, encourage learning motivation, and visualize abstract concepts. The researchers stated that AR could be developed during the pandemic to support teachers in creating effective learning environments. Digital-based learning resources equipped with illustrations in pictures can be an additional alternative to encourage students' online learning interest. In science fields such as biology, the use of AR to promote student attitude and learning outcomes has been studied [15]. However, this researcher has not revealed its impact on students' CT, and a sheet of paper is used as an AR marker. We think that providing learning resources in comics as AR markers can support students even though they do not have internet data packages. The design of the AR-integrated learning resources must consider the existing facilities and the ability of students to use them. Comics in print are suitable as markers for AR. Students do not need to buy data packages if they do not have the money. They install the AR application on their smartphone device and expose it to the comics to display 3D shapes of anatomical structures. Comics contain pictures that illustrate an event through a story. Comics contain a combination of text and images [16]. The text helps explain the events in the picture. Natural life phenomena and science concepts can be built into comic storylines [17]. Stories in comics attract students' attention. Comics can not only explain abstract science concepts, but can also provide humor, contextualize learning and visualize objects [18], [19]. Comics can help empower students' CT compared to students in non-comic classes [20]. The downside of comic books is that they cannot display 3D shapes. Designing a comic book as an AR marker is an innovative idea. Yusof and Masmuzidin [21] investigated the effectiveness of the AR-assisted storybooks on Malaysian school children. These researchers found that the AR-assisted storybooks could increase students' interest, improve their mood, quickly understand the stories, be easy to read and be useful. Unfortunately, this research has not measured how the combination of the two can empower students' CT. Thus, this research aims to develop comic books as AR markers to raise students' CT in biology learning. ### 2. Method This research develops a product in the form of comic books (print version) and AR. Product development follows the ADDIE model (analysis, design, development, implementation, evaluation) [22]. The participants consisted of four lecturers who are experts in biology, learning, and learning media. One teacher and twenty 11th grade science students of public high school. The school is geographically located in a rural area. Even though it is located in a rural area, it can be reached by internet access. Internet conditions are less stable, so this is the basis for using comics and AR. Students involved in this research voluntarily become participants. They were given an initial explanation before using comic books as AR markers. The analysis stage is done by measuring students' critical thinking. Students' learning resources are identified to determine their availability. During the stage design, comic and AR storyboards were designed. The material of the coordination system is set as the topic of
the story in the comic. Three main characters were invented: Diva (character as a child and adult), Ato (character as a child and adult), and one supporting character, namely a biology teacher. In the development stage, comic and AR media are made. The first comic media was made according to the designed storyboard. The characters and storylines are sketched on paper. One by one, the comic pages are drawn using a pencil. The images are scanned and digitally sketched using the Sketchbook application. Text and word bubbles are created using PicsArt Photo Editor. AR was created with the help of unity3D and the Vuforia SDK and made primarily based on .apk files (for android devices). Limited scale trial in public high school with pre-test – post-test design. An evaluation was carried out to determine the strength of the product developed to increase students' CT. Data are collected using validation sheets, questionnaires, and tests. Lesson plans are also used to facilitate the learning process. Validation sheets are used by learning experts and learning media to measure product validity. Validation sheets are used during the development stage. Experts give a score of 1 - 4 for each aspect that is measured. The student response questionnaire contains 22 statements with a scale of 1 - 4. The questionnaire is given at the end of the lesson. The test used in this research measures students' critical thinking (referred to as CTT). The CTT is administered before the study is performed, and these initial CT data are called pre-CT. The second measurement is done after students learn with comics and AR media. Data collected on the second measurement is called post-CT. The CTT is compiled based on the indicators studied by Mapeala and Siew [23]. The indicators of CT are (1) comparing and contrasting, (2) sequencing, and (3) identifying cause-effects. The total number of CTTs is 26 (Cronbach's alpha = 0.91). The eligibility of comic books and AR was calculated based on the score given by the expert, the improvement of the student's CT, and the student's response. Criteria for validity is calculated using the Akbar formula [24]. The product is valid if the score is between 80 - 100 (without revision). The product is valid, and minor revisions are made if it gets a 70 – 84. The product is valid and significant revision is made if it gets a score of 50 - 69. The product is invalid if the score is below 50. Normalized gain (ngain) is calculated to measure the increase in students' CT. The difference between pre-CT and post-CT is calculated using the related t-test. The normality test of CT data is calculated using Kolmogorov Smirnov. Effect size (d) is calculated by Dunlap's formula [25]. Students' CT level results are categorized into five categories in Iwan et al. [26]. The CT categories are excellently developed (80 - 100), well developed (60 - 79), moderately developed (40 - 59), less developed (20 - 39), and CT is undeveloped for a score below 20. ### 3. Result and Discussion This research aims to produce comic books as AR markers. Comic books and AR as a solution for online learning in the pandemic era. The product that has been produced is tested for validity through an assessment by an expert. The results of the validity calculation are presented in Table 1. Table 1. Assessment of product validity | Assessment | Score | Validity | | | |------------------------|-------|----------|--|--| | Comic book | | | | | | Material expert | 87.50 | Yes | | | | Learning expert | 83.93 | Yes | | | | Media expert | 97.50 | Yes | | | | AR | | | | | | Material expert | 95.00 | Yes | | | | Learning expert | 96.15 | Yes | | | | Media expert | 100 | Yes | | | | CTT and Lesson Plan | | | | | | Critical thinking test | 91.67 | Yes | | | | Lesson Plan | 95.83 | Yes | | | Products that have been designed meet the criteria for validity based on experts. The scores obtained indicate that comic books, AR, lessons, and critical thinking tests can be used to collect data. a. Front cover b. Back cover c. First page d. Content page Figure 1. Comic book Figure 1. shows the cover (front and back) and content of the designed comic book. The subject matter in comic books is about the human coordination system. This comic book is designed for 11th grade science students. The first page of the comic opens with teaching and learning activities in the classroom. The biology teacher ends the learning activity by giving assignments for students to do at home. The teacher's character only appears on this first page. Figure 1.d shows the biology material content section. In this section, there is an image of the ear which is a marker for AR applications. When students point their smartphones towards the ear image, a three-dimensional image will be displayed on the smartphone layer. AR in mobile device 3D image of ear 3D image of eye Trial by student Figure 2. AR and organ 3D images display Figure 2.a presents the menu view from AR. In this view, there are four main menus, namely maker profiles, instructions, tests, and augmented reality. When students click on the augmented reality menu, they will point to the camera and aim at the markers available in comic books. The shape of the 3D image is shown in Figures 2.b and 2.c. Figure 2.d shows a trial of the use of comics by students. The trial was conducted on all participants (N = 20) in this research. Table 2. Mean, standard deviation (SD) and n-gain of students' CT | Data | N | Mean | SD | n-gain | |---------|----|-------|-------|--------| | Pre-CT | 20 | 50.32 | 13.31 | 0.29 | | Post-CT | 20 | 69.10 | 16.55 | 0.38 | The findings presented in Table 2. revealed that the students' pre-CT was at a moderately developed level. The post-CT data showed a mean of 69.10, which indicated that the students' CT had increased. The score revealed that the students' CT reached a well-developed level. The difference between these two scores is 18.78. When calculating the increase in CT students, the n-gain value is 0.38. This score revealed that there is a moderate improvement in the student's CT. Then the CT level of students is presented in Table 3. Table 3. CT level of students | | Number of Students and Percentage | | | |-----------------------|-----------------------------------|----------|--| | Level | | | | | | Pre-CT | Post-CT | | | Undeveloped | 7 (35%) | 0 (0%) | | | Less Developed | 6 (30%) | 1 (5%) | | | Moderately Developed | 7 (35%) | 4 (20%) | | | Well Developed | 0 (0%) | 10 (50%) | | | Excellently Developed | 0 (0%) | 5 (25%) | | The findings on the CT level of students revealed that at the beginning of the CT, none of the students are well developed or excellently developed. Most of the students are at the undeveloped and moderately developed level (each percentage of both is 35%). The remaining 30% of students are in the less developed category. The use of comic books as AR markers changes students' CT for the better. The findings showed that as many as 50% of students had well-developed CT. 25% of students even reached the level of excellently developed. There are still 20% of moderately developed students, and 5% are less developed. There is no single student whose CT is undeveloped when using comic books as an AR marker. Final findings indicated that 75% of the CT students progressed well. The remaining 25% need to have a CT upgrade. Furthermore, Table 4. presents the results of testing the differences between pre-CT and post-CT. Table 4. Related t-test result of students' CT | | r ₁₂ | Mean | SD | t | df | p | d | |---------------------|-----------------|------------|-------|------|----|------|------| | Post-CT –
Pre-CT | 0.69 | Mean 18.78 | 12.13 | 6.93 | 19 | 0.00 | 1.22 | The test results indicate that pre-CT and post-CT are significantly different (p = 0.00 < 0.05. This finding reveals that the use of comic books as an AR marker changes students' CT. The d value is 1.22, indicating a strong effect of using comic books as an AR marker to raise students' CT. This research indicates that the use of comic books as AR markers effectively raises students' CT. This research also measures students' responses to the use of comic books as AR markers. Table 5. presents the student's responses. Table 5. Students' response towards comic books and AR | No | Statement | % | |----|---|----------| | 1 | The title of the comic is in accordance with the content of the lesson presented | 90 | | 2 | The cover display attracts attention to reading comics | 88 | | 3 | The language used is simple and easy to understand | 84 | | 4 | The material in the comic is very easy to understand | 79 | | 5 | The pictures on this biology comic page are very clear and make it easier for me to learn | 88 | | 6 | I feel that using this biology comic can motivate me to study | 84 | | 7 | The comic storyline makes me enjoy reading the contents of the comic | 81 | | 8 | The writing on this development comic is very clear and easy to read | 85 | | 9 | The material presented can stimulate critical thinking | 81 | | 10 | The contents of the comic story contain accurate coordination system information | 80 | | 11 | Comic media facilitates the learning process on coordination system materials | 86 | | 12 | Characters / figures in the comic are interesting to read | 74 | | 13 | Comic helps to increase the intensity of self-study | 88 | | 14 | I am interested in using comics learning media with AR applications | 93 | | 15 | 3D drawing in AR made me learn more about the coordination system material in comic | 88 | | 16 | The compatibility of 3D images in AR with images in comic makes it easier for me to learn | 86 | | 17 | The use of AR-based learning media makes it easier for me to learn because I can see real pictures on the coordination system material |
90 | | 18 | This AR media makes me want to continue to
search and find out more about coordination
system materials | 83 | | 19 | I feel amazed to see certain pictures on the coordination system material because it looks real | 84 | | 20 | The sample questions contained in AR media helped me to solve critical thinking questions | 84 | | 21 | I can relate the content of AR media to things I have seen, done, or thought about in my | 76 | | 22 | daily life The content on AR media during this learning gives a valuable impression starting from knowledge, ways of thinking to solve problems contained in the coordination system material | 90 | | | Average | 84.5 | Students' responses to the use of comic books as AR markers are 84.5. These findings indicate that they respond excellently to comic books as an AR media in learning. Students gave three statements a good response. The first statement is that the material in comics is very easy to understand, with a response of 79%. The second statement is that the characters/figures in the comics attract attention to read with a response of 74%. The third statement is that I can relate the content of AR media to things I have seen, done, or thought about in my daily life, with a response rate of 76%. The remaining 19 statements were answered excellently. There are no statements that get a poor response from students. Therefore, the use of comic books as AR markers makes students interested in reading and studying diligently. This study has designed a comic book as an AR marker and evaluated its use to raise students' CT. The student learning environment is transformed into active and interactive learning. Due to the pandemic, the limited school facilities to conduct experiments and school closures caused learning conditions unimproved. In this research, comic books are designed, and AR displays three-dimensional images in comics. The designed comics and AR are judged to have usefulness by experts. The development of a teaching material must pay attention to the material and pedagogical aspects [27]. Experts in learning media, materials, and biology learning have provided an assessment, and it was decided that the designed product was valid and suitable for classroom teaching. Three-dimensional shapes such as ears, human nerves, eyes, skin, and others in the material of the coordination system can be displayed through AR scanning on these images in comics. The comic is arranged to tell how two friends seek information by heading towards their future as they grow up. The image presented in the comic is used as a marker for AR. Some researchers may use an animal's black and white image as an AR marker [28]. In our research, the AR markers used are cartoon images of human organs (see Figure 1.d). The picture is made into a cartoon because it adapts to the compiled learning resources, namely comic books. The direction of the smartphone camera that has been installed with AR will display a three-dimensional image of the targeted organ. The use of these two products makes it easier for students to study online during the pandemic. The limitations of the internet network that many students complain about can be overcome through comic media. Comic media is made in printed form to facilitate student access because all students only have one smartphone. AR installed on students' smartphones also does not require internet access. Using both is cost-effective and easy to use. AR is used as an additional tool to help students understand the anatomy of the human body [29]. In this research, researchers use AR as an additional tool to visualize images in comic books into three-dimensional shapes. The images in comic books are related to the content of the human coordination system. This material covers the nervous system, hormones, and sensory systems, containing many abstract concepts. Students need a form of accurate visualization of the organs in the system. Parts of the brain such as the cerebellum, spinal cord, and other parts of the nerves can be assisted with three-dimensional visualization using AR [30], [31]. The presence of comic books is intended to attract students' attention to read the material. Facts about biological phenomena and anatomical structures are presented in comic books to support students to think properly. Optimization of organ visualization in the coordination system is assisted by AR. Comic books become markers so that three-dimensional images can be displayed. Several studies have reported the use of comic books, likewise with the use of AR. However, the use of both has not been much, which is what this research has done. The combination of the two is a new design in biology learning. If previous research used the two separately, in this research, the two products were combined. The three-dimensional view helps students to think deeply about the material. They can trace every detail of the organ, for example, the ear's anatomy (see Figure 2.b). Weng et al. [15] have developed an AR integrated learning resource. The difference found by the researcher with what we did is in the shape of the marker. This researcher used books to provide scientific information, and students scan to display 3D objects. The research we have done is designing biological information about the human coordination system through a story in a comic. Students can display 3D shapes of human organs by pointing their smartphone cameras at 2D images in comics. Here, while reading the biological information presented in the comics, students can further explore the shape and the inside of the organ (e.g., the inside of the ear organ). Students cannot observe the inside of the ear organ to find out how to enter sound into the human body. There are already stories about how the human process can hear sounds in the comics, but the curiosity of the parts that are passed in the ear organ is observed through the 3D images displayed. Thus, students can correctly sequence the incoming sound process until humans can hear it. This process trains sequencing skills which is one of the CT indicators. The 3D display that presents objects in real forms stimulates curiosity, students' scientific attitude, and empowers CT skills [32]. The observations made by students on threedimensional objects displayed by AR made them critical [33]. In this research, it is proven by the significant difference between pre-CT and post-CT students. Comic books as AR markers have had a significant effect, as indicated by the d value of 1.22. Students can compare, sequence, and identify cause and effect when they study with the help of comic books as AR markers. Students' understanding of the anatomical structure of the organs of the coordination system makes them able to distinguish or compare. Organ structures displayed in three-dimensional form enable students to determine the paths traversed by impulses in human organs, such as the eye. That ability is part of critical thinking. Students are trained in CT as long as they learn to use comic books as AR markers. Students' responses to the use of comic books as AR markers reached the excellent category. These findings indicate that they are interested in the product that has been used. The appearance and content of comic stories attract their attention to read them. Students were amazed by the 3D display presented in the AR application. They can easily display the 3D shape of an organ by simply pointing the AR app at the markers in the comics. Students' excellent responses indicated that they agreed with storybooks and AR used in learning to empower their CT [34]. During the pandemic, many students were absent from class and unable to study independently because they were not interested in learning [35]. However, the material presented in comics can increase the intensity of independent learning, attract attention and stimulate critical thinking. Students also responded that the 3D display by AR gave a good impression ranging from knowledge, ways of thinking to solve problems contained in the coordination system material. Thus, it is evident in this research that using comic books as AR markers can improve students' CT and get an excellent response. ### 4. Conclusion This research concludes that comic books and AR meet their validity and use in learning during a and can improve students' pandemic Recommendation for future research is trials on a large scale to determine the strong effectiveness of using comic books as AR markers. The results of this trial are still limited to AR, which can be installed on Android devices. This deficiency was found based on the limited-scale trials that have been carried out. Some students are using non-Android-based devices. The subsequent trial will make AR compatible with other devices. ### Acknowledgements The researcher is grateful for the funding of this research through the PDUPT grant by Kemendikbudristek (No: 177d/UN42.15/PG/2021). ### References - [1]. Sari, R., Sumarmi, S., Astina, I., Utomo, D., & Ridhwan, R. (2019). Measuring students scientific learning perception and critical thinking skill using paper-based testing: school and gender differences. *International Journal of Emerging Technologies in Learning (IJET)*, 14(19), 132-149. - [2]. Sarwanto, S., Fajari, L. E. W., & Chumdari, C. (2021). Critical Thinking Skills and Their Impacts on Elementary School Students. *Malaysian Journal of Learning and Instruction*, 18(2), 161-187. - [3]. Ozerbas, M. A., & Erdogan, B. H. (2016). The effect of the digital classroom on academic success and online technologies self-efficacy. *Journal of Educational Technology & Society*, 19(4), 203-212. - [4]. Puig, B., Blanco-Anaya, P., & Pérez-Maceira, J. J. (2021, May). "Fake News" or Real Science? Critical Thinking to Assess Information on COVID-19. In *Frontiers in Education* (Vol. 6, p. 92). Frontiers. - [5]. Sprenger, D. A., & Schwaninger, A. (2021). Technology acceptance of four digital
learning technologies (classroom response system, classroom chat, e-lectures, and mobile virtual reality) after three months' usage. *International Journal of Educational Technology in Higher Education*, 18(1), 1-17. - [6]. Chaturvedi, S., Purohit, S., & Verma, M. (2021). Effective Teaching Practices for Success During COVID 19 Pandemic: Towards Phygital Learning. Front. Educ. 6: 646557. doi: 10.3389/feduc. - [7]. Leinonen, T., Brinck, J., Vartiainen, H., & Sawhney, N. (2021). Augmented reality sandboxes: children's play and storytelling with mirror worlds. *Digital Creativity*, 32(1), 38-55. - [8]. Önal, N. T., & Önal, N. (2021). The effect of augmented reality on the astronomy achievement and interest level of gifted students. *Education and Information Technologies*, 26(4), 4573-4599. https://doi.org/10.1007/s10639-021-10474-7 - [9]. Al Weshah, A., Alamad, R., & May, D. (2020, February). Work-in-Progress: Using Augmented Reality Mobile App to Improve Student's Skills in Using Breadboard in an Introduction to Electrical Engineering Course. In *International Conference on Remote Engineering and Virtual Instrumentation* (pp. 313-319). Springer, - [10]. Chanjaradwichai, S., Na-Songkhla, J., & Chiasiriphan, T. (2019). A Trackable Augmented Learning Media System for a Higher Education Level. *International Journal of Emerging Technologies in Learning (iJET)*, *14*(13), 129-144. - [11]. Hedberg, H., Nouri, J., Hansen, P., & Rahmani, R. (2018). A Systematic Review of Learning Trough Mobile Augmented Reality. *International Journal of Interactive Mobile Technologies* (iJIM), 12(3), 75-85. - [12]. Arici, F., Yildirim, P., Caliklar, Ş., & Yilmaz, R. M. (2019). Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. *Computers & Education*, 142, 103647. - [13]. Sahin, D., & Yilmaz, R. M. (2020). The effect of Augmented Reality Technology on middle school students' achievements and attitudes towards science education. *Computers & Education*, 144, 103710. - [14]. Faridi, H., Tuli, N., Mantri, A., Singh, G., & Gargrish, S. (2021). A framework utilizing augmented reality to improve critical thinking ability and learning gain of the students in Physics. Computer Applications in Engineering Education, 29(1), 258-273. - [15]. Weng, C., Otanga, S., Christianto, S. M., & Chu, R. J. C. (2020). Enhancing students' biology learning by using augmented reality as a learning supplement. *Journal of Educational Computing Research*, 58(4), 747-770. - [16]. Cihan, N. (2014). Eğitsel Araç Olarak Çizgi Romanin İlköğretim 8. Sinif Türkçe Ders Konularına Uyarlanmasi. *Journal of Research in Education and Teaching*, 3(3), 313-321. - [17]. Damopolii, I., Lumembang, T., & Ílhan, G. O. (2021). Digital Comics in Online Learning During COVID-19: Its Effect on Student Cognitive Learning Outcomes. *International Journal of Interactive* Mobile Technologies, 33-47. - [18]. Lin, S. F., Lin, H. S., Lee, L., & Yore, L. D. (2015). Are science comics a good medium for science communication? The case for public learning of nanotechnology. *International Journal of Science Education, Part B*, 5(3), 276-294. - [19]. Morel, M., Peruzzo, N., Juele, A. R., & Amarelle, V. (2019). Comics as an Educational Resource To Teach Microbiology in the Classroom. *Journal of microbiology & biology education*, 20(1), 20-1. - [20]. Lestari, F. P., Ahmadi, F., & Rochmad, R. (2021). The Implementation of Mathematics Comic through Contextual Teaching and Learning to Improve Critical Thinking Ability and Character. *European Journal of Educational Research*, 10(1), 497-508. - [21]. Yusof, M. A. M., & Masmuzidin, M. Z. (2021). Preserving Malaysian Folktales Through Mobile AR Application: Sumpahan Ikan Tapah. *Journal of Computing Technologies and Creative Content* (*JTec*), 6(2), 81-84. - [22]. Branch, R. M. (2009). *Instructional design: The ADDIE approach* (Vol. 722). Springer Science & Business Media. - [23]. Mapeala, R., & Siew, N. M. (2015). The development and validation of a test of science critical thinking for fifth graders. *SpringerPlus*, 4(1), 1-13. - [24]. Akbar, S. D. (2013). Instrumen Perangkat Perangkat Pembelajaran. *Bandung: PT. Remaja Rosdakarya Offset*. - [25]. Dunlap, W. P., Cortina, J. M., Vaslow, J. B., & Burke, M. J. (1996). Meta-Analysis of Experiments With Matched Groups or Repeated Measures Designs. *Psychological Methods*, 1(2), 170-177. - [26]. Nusantari, E., Abdul, A., Damopolii, I., Alghafri, A. S. R., & Bakkar, B. S. (2021). Combination of Discovery Learning and Metacognitive Knowledge Strategy to Enhance Students' Critical Thinking Skills. Combination of Discovery Learning and Metacognitive Knowledge Strategy to Enhance Students' Critical Thinking Skills, 10(4), 1781-1791. - [27]. Shariffudin, R. S., Azanan, S., & Hsien, J. G. C. (2012). Multiple intelligence multimedia courseware (MIMCO) based on the constructivist-contextual model for the learning of some chemistry concepts. *International Journal of Future Computer and Communication*, 1(1), 29. - [28]. Iftene, A., & Trandabăţ, D. (2018). Enhancing the attractiveness of learning through augmented reality. *Procedia Computer Science*, *126*, 166-175. - [29]. Zafar, S., & Zachar, J. J. (2020). Evaluation of HoloHuman augmented reality application as a novel educational tool in dentistry. *European Journal of Dental Education*, 24(2), 259-265. - [30]. Venkatesan, M., Mohan, H., Ryan, J. R., Schürch, C. M., Nolan, G. P., Frakes, D. H., & Coskun, A. F. (2021). Virtual and augmented reality for biomedical applications. *Cell Reports Medicine*, 2(7), 100348. - [31]. Tagaytayan, R., Kelemen, A., & Sik-Lanyi, C. (2018). Augmented reality in neurosurgery. *Archives of medical science: AMS*, 14(3), 572. - [32]. Astuti, T. N., Sugiyarto, K. H., & Ikhsan, J. (2020). Effect of 3D Visualization on Students' Critical Thinking Skills and Scientific Attitude in Chemistry. *International Journal of Instruction*, 13(1), 151-164. - [33]. Billinghurst, M., & Duenser, A. (2012). Augmented reality in the classroom. *Computer*, 45(7), 56-63. - [34]. Bakri, F., Vani, N. D., Permana, H., & Muliyati, D. (2021, April). Textbook with augmented reality technology: Improve critical thinking skill in elasticity concept. In *AIP Conference Proceedings* (Vol. 2331, No. 1, p. 030036). AIP Publishing LLC. - [35]. Raiman, M., Liu, A. N. A. M. M., & Wolo, D. (2021). Investigation of students' motivation to learn science while studying from home during a pandemic. *Journal of Research in Instructional*, *1*(1), 33-42.