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is article presents a novel load frequency control (LFC) method using an adaptive internal model of a power system, where
maodel predictive control (MPC) technigue is applied to the internal model, which is being updated on-line. The proposed method
will improve the LFC performance by reducing model identification error and by handling the disturbance effectively. Novelty

lies in the combination of MPC and the effective use of the internal
valent to generation dispaich control cycle.
e-area power system model. The results show that the proposed method can accurately identify the target

which is typically
simulations using a t

el to meet the response time of real world LFC control,
e effectiveness of the proposed control is confirmed by

plant and successfully handle disturbances to realize a reliable LEC. © 2019 Institute of Electrical Engineers of Japan. Published

by John Wiley & Sons, Inc.
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1. Introduction

The objectiv@¥ll load frequency control (LFC) often referred
to as AGC is 0 maintain the power sys?frequency against
continuous load changes and fluctuations. Elgerd and Fosha [1]
first addressed the optimal control concept for frequency control
design of an interconnected power system and a multi-area power
system started to be considered for LFC synthesis. Then, various
works proposed numerous sche mes LFC control [2—-14]. Many
recent studies are concerned with robust control techniques such
as Hoo, LMI to deal eaclively with system disturbances and
uncertainties [4]. Some mntelligent methods were also applied to
the LEC problem including neural networks [5-7], fuzzy logic,
and genetic algorithms [8—-10]. Recently, model predictive control
(MPC) has received much attention, in which a design of MPC
for a system including wind turbines was reported in ref. [11] and
a comparison with conventional proportional —integral (PI) control
was reported in Ref. [12].

Internal el control (IMC) is well known as model-based
controllers. IMC can use the internal model to predict the future
output of the plant and also to make correction of tifgputput. This
method can be used to control SISO systems [15], or to combine
with the other controllers such as PUPID controller [15-22],
fuzzy controller [23,24], al network [25], or MPC [24-27].
The combined design of IMC and MPC was proposed a few
decades ago [11,12] and until now the variant of both controllers
has been in@Rasing for the process controls. The merit of these
approaches 1s the ability to predict the future behavior of the
controlled plant based on the internal models, while a mismatch
[l the internal model can degenerate the performance of the
controllers. An @@@ptive model may be a solution. Many previous
research studies have succeeded to apply the IMC adaptive model
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into a controller ie. PYPID [15,1621], fuzzy controller [24],
or MPC [26]. 1

Nowadays, frequency stability 18 a major issue in power system
operation due to a rapid increase in renewables such as wind a@
solar generations. The complexity is increasing in the operation o
a multi-area power system, where the system characteristics may
vary depending on system conditions. While the system conditions
are changing, the present LFC control cycle is relatively slow,
equivalent to the generation dispatch control cycle in a typical
power system. Therefore, a more sophisticated LFC method is
required to identify the target system characteristics to improve
the stability.

This article presents a novel LFC method, where an adaptive
MPC using an IMC model that was repeatedly updated by LSM
in real time operation is proposed. Novelty lies in the effective
combination of IMC and MPC techniques to meet typical LFC
conditions that is a slow control cycle for various systems. It is
shown that the proposed adaptive MPC effectively works keeping
the system frequency at a des set point, while the target
model is successfully identified. The effectiveness of the proposed

by the simulations using a standard LFC
ee-area interconnected power system.

controller is demonstr
model representing a

2. Proposed Controller

2.1. Outline Figure | outlines the control scheme for
LFC. An IMC structure is used to identify LFC dynamics by
observing plant input and output signals. LSM is used for adaptive
parameter estimation of the plant model. MPC is adopted as the
main controller, where the Laguerre function is used to provide
optimal control. In this power system model, the individual areas
are interconnected by tie lines. Inside the area, each block is
described as below.

o Each area is represented a typical model for the LFC
study, which is explained 1n Section 2.2,

o The internal model structure is explained in Section 2.3,
which is a simplified power system model. Parameters of

© 2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
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Fig. 1. Proposed adaptive LFC scheme based on MPC

the internal model are identified using the LSM algorithm
as an adaptive model, which is used to determine optimal
parameters for MPC.

s A MPC controller will be the main controller in the proposed
LFC scheme where Laguerre functions are used. Section 2.4
describes the proposed control algorithm.

2.2, Power system model  Power system model in Fig. 1
is used to represent each area. Mathematical model is given in the
Appendix. Based on the simulation using this model, control signal

plant (Ppgc, Pklk — 1), P[k]) and the response of the plant
(area control error [ACE]) are observed. The ACE signal to the
plant is obtained from (1).

ACE; = APy i + Bi Afi (1)

Figure 2(a) represents a typical configuration of LEC for thermal
power plants in each area. An important issue in a practical LFC
is that the LFC signal to the plant, Py pc, is added o ELD signals
whose sum is the total demand P(k|k — 1) predicted at k—1.
The control signals a nt to thermal power plants typically of
the order of minutes to change the set points of the individual
plants; in the measurement of ACE, a low-pass filter is usually
used to eliminate fast component of the signal [28]. This implies
that the LEC signal should be determined based on a suitable
plant model whose time scale meets the LFC control cycle. This
point is neglected in most of the previous works. Furthermore,
the plant input signals are limited by ramp rate constraints of
individual plants, typically 3%/min (0.05%/s). Therefore, this
article utilizes the singular perturbation method [29] to focus on
the slow dynamics of LFC control. In this method, the original
system

X = fslxs, xXp, 1)

£xp = fp(xg, xXp, u) 2)

is represented by the first order approximation of the slow

subsystemn as below:
‘S = !Si_l's,_l']:‘. i)

0 = frlxs, ¥, u) (3)

¢ 18 a parameter for time scale separation, which is assumed
about 1 min in this study according to typical real system setting.
This treatment is equivalent to the manipulation that all the time
constants less than 1 min are set to zero. As a result, the fast
dynamic tions for AVR, speed governor, and power system
stabilizer are treated as static equations. In this situation, the

Pl k-1

Plk)

P
ACE_ e
ik
_ i I
Pl k-t !
1

Plk)

Fig. 2. Detailed and simplified models. (a) Detailed model, (b)
intermediate model (c) simplified model
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Fig. 3. Three area power system model

original model is approximated by Fig. 2(b) and furthermore by
Fig. 2(c) by aggregating all the power plants.

Note that the ELD signal at time point & is computed based
on the demand prediction at k—1 in the past, while the total
demand is measured at time k&, the present time. The error of
the demand prediction is counted as a disturbance. In the original
model, control signal to the plant (Ppp-, P(k|k — 1), P[k]) and
the response of the plant (ACE) are observed.

2.3. Simplified power system model for study area
This article uses an internal model of the target system that
consists of essential frequency dynamics restricted by the ramp
rate constraint, where by essential is meant, the system dynamics
of the order of 10 s to minutes that exclude fast transient dynamics.
To capture the essential dynamics only, the following simplified
model is used:

ACE(k + 1) =@ -ACE(k) + b - P;(k) )

TEET Trans 14: 1145-1152 (2019)
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Table I. Parameters of the three area power system

Area d (pu/H;) 2H (pu s) R (Hy/pu) T, (s) T (s) B (puHy) ﬁ (pwH;)
1 0.015 0.1667 3.00 0.08 0.40 0.3483 =020
T =025
2 0.016 0.2017 273 0.06 0.44 0.3827 Ty =020
Tn =012
3 0.015 0.1247 282 0.07 0.30 0.3692 Ty =025
T =012
Table II. Disturbance settings parameter set (@ and b) using the LSM algorithm. This process is
. very simple and reliable to obtain real-time estimation. Note that
Disturbance . E . .
discrete system (4) is almost equivalent to the first lag system with
Random Step change sampling time & whose gain and time constants are given by:
Case I Applied Not applied i ~ =
Case 11 Alpaglied 0.2pu =40 K=b/d-m. T=h/(1-d
Case 111 Applied ~0.2pu at t =40
2.4. Formulation A MPC is a type control to predict
the behavior of the controlled plant and then to determine an
. . _ _ _ oplim trol. To apply MPC, the plant model is redefined based

5
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-
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Eg. 4. Controller responses in case 1. (a) Conventional MPC
controller, (b) proposed adaptive controller

where
@k):ﬁ‘mk — 1) + Prrc(k) — P(k) (5)

Using the input and output signals measured in the real plant,
adaptive parameter estimation is performed using LSM. In the
actual power system, (ACE(k) and F;(k)) are observed, and
therefore, the set of most recent data will be used to estimate the

on (4) as follows:

x(k+1)=A x(k)+B Prk)

yk)=C x(k) (6)
or
AMCEk +1)] _[@ 0][AACE( b
ACE(k + 1) } - [a‘ 1} [ ,«1(:13(1(ﬁ“L [ﬂ AR
B AACE (})
¥y = [0 IJ[ACE{k)
where

AACE(k) = ACE (k) — ACE(k — 1)
APpk) = Pr(k)— Py(k — 1)

It should be mentioned that all the parameters of (6) are alreacm
known by the parameter estimation by LSM. This parameter 18
based on the response of the real power system where all the
operational constraints are embedded. Then, using the MPC theory,
the following cost function is minimized.

Ny Ne=1
I =Y ACEK +mlkY +re Y_ APk +m)®  (T)

m=l m=0

This minimization implies that based on the prediction of future
states of the first term, k + 1, k+2,..., k+Np at present time
k. the series of the future and present inputs of the second term
are optimized. There are several methods to obtain the solution. In
this article, Laguerre functions are applied to represent the future
inputs as below.

APk +m) = Jf.{m)Jr = [Im) ..o Iy(m)]ler ... CN]T

=[Lim) ... Iym)[cy ... cx]" (8)

here, L(0) ... L(m) are the set of discrete Laguerre functions
in the vector form. [;(m) is the discrete Laguerre functions
(i=1.... N) with the sampling instant k. and ¢; is the coeflicient
(i=1,..., N') to be determined to minimize the cost function. After
2% minimization, the optimal feedback control at present time k
can be determined as follows:

AP (k) = Ky ¥(K) ©)

TEET Trans 14: 1145-1152 (2019)
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Table III. Frequency deviation analysis

Conventional MPC cases Proposed IMC cases

Area I 11 m I 11 111
Over shoot
1 — 0.1541 0.2701 — 0.1402 0.2698
2 — 0.1380 0.1277 — 0.0884 0.1096
3 — 0.1358 0.1266 — 0.1172 0.1253
Standard deviation
1 0.0044 0.0247 0.0146 0.0034 0.0256 0.0163
2 0.0040 0.0180 0.0105 0.0024 0.0139 0.0005
3 0.0035 0.0221 0.0130 0.0013 0.0204 0.0132
. i ) i ) — Area I—— Amal— Awa For MPC control design, it is required to select the time
- w_ » scaling factor, a, and the number of the weighting coefficient,
E— r'l o N. Although in theory any selection of parameter can be an
B MDL Skaty st o trtmmce gl | Sip cikrbasce begin | approximation, an adequate selection may provide better control
i o X a0 £ EY a0 120 performance.
04 T 1 . § .
g o2 it 2.5. putational procedure The computational
g 0 S 1:.;@.‘-_““,..... i procedure for the proposed control is given as follows.
gl Peadysute] Random ditrtance begin | Sep disurbance begin . | Step 1: At the control center, using control signal to the plant
o ! ? “ “ . e = Py and measured ACE, adaptive model identification is performed
o T T ' ' 1 using the least square method to estimate (@ and b) .
;": L T "":""“T‘WW"'W““"""""”’ R —— Step 2: Gain Ky is computed and LFC input is determined,
& _oos| which is divided and added to ELD signals to the individual power
Steadystte Random disturbance begin ~ Step distrhance begin lants
aal i L i m " s L J plants.
. 0 x 40 6 kg 104 120
g Repeat steps 1-2.
(a) Note that the actual control cycle for LFC is usually equivalent
02, ) ) —— Al — A Amad to the ELD control cycle, which is about 1s to 1 min with a
N e ramp rate limit, which is typically around 3% of plant capacity per
g W‘ ’ minute. This implies that such a simple model of (6) is sufficient.
4 —onz ostme! Adee In the next section, the control cycle is assumed | s, where past
004 i o o S mu: = o o ™ 20 s of measured data are used to determine the LFC signal taking
o i i . account of 3% ramp rate limit.
ERE ]\MVNM»
5 R L 3. Simulations
L . Initial madel . Addaptive mod.ul ) . . |
“x 0 x a0 ] s 100 1 A three-area system cited from Refs [4,13] in Fig. 3 is used as
01 T 1 an original system whose parameters are given in Table I. In this
g s [\”y"m | system, capacity of each area is 1 GW = | pu. The LFC capacity
2 I T (i ' is assumed to be 0.02 pu, while the ramp rate limit is set to 5%/s
.| nitialmade] | Addagtive mex]el 9 | assuming that all the generation comes from thermal power plants.
M 0 k- 50 P 100 120

Time (s}

(h)

Fig. 5. Controller responses in case IL (a) Conventional MPC

controller, (b) proposed adaptive controller

where

K

mpe = LIV Q7' (10)

11 Np

Q=73 ¢im) Q ¢m) +R, ¥ =3 @lm) O A", p(m) =
m=1 m=I1

Np

S Al g ki 0=CTC, Ry =7, -diag[1, ... 1].
i=0

See Appendix for the treatment of Laguerre functions, L(0) to
Lim).

Then, the LFC control signal to the power system can now be
updated as follows.

Pree(k) = Prpelk — 1) + AP (k) (11)

1148

Inside the three area power system model, the detailed model
given in the Appendix is used for each area.

The proposed controller will be computed as follows. The
system identification is carried out using the available t/output
data of the plant. An initial value of Ky of the controller is
computed based on the initial setting of the internal model, which
w? updated using the updated internal model from t = 20.

e proposed control scheme is verified, compared with an
existing controller that is aa nonlinear MPC controller with the
Laguerre function internal model. The scaling factor @ =0.3 and
network lengths N =4 are used for the existing controllers, which
have no adaptive nature different from the proposed controller. The
gain of the existing controller was preliminary computed ofl-line,
which is applied for the whole simulation period.

Simulations are performed in three cases with different distur-
bances as shown in Table II, where random and step disturbances
are imposed on the load in area 1. The disturbances are caused by
the load changes. The ‘random’ implies while noise with maxi-
mum 0.1 pu changes in the load, which is applied from ¢ =0. The
‘step disturbance” is 0.2 pu change in load, which is applied at
t =40 for cases II and III in addition to the white noise.

TEET Trans 14: 1145-1152 (2019)
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Fig. 6. Controller responses in case III. (a) Conventional MPC
controller, (b) proposed adaptive controller

4
3.1. Case I  Simulation results are shown in Fig. 4(a) for

the conventional MPC method and in Fig. 4(b) the proposed
method. The results are summarized in Fig. 8 and Table IT1. Tt
is observed that the proposed controller shows slightly betier
performance compared to the existing MPC controller.

3.2. Case I  The step disturbance is applied at t =40 in
addition to the random disturbance. The results are shown in
Fig. 5(a) for the existing MPC and Fig. 5(b) for the proposed
controller. They are summarized in Fig. 8 and Table IIL

A better performance is observed. It is noted that although
the proposed method is based on much simpler internal model
compared with the existing controller, the control performance
is even better. This is an advantageous feature of the proposed
method.

3.3. Case III  An outage of generator producing 0.2 pu
real power is applied at + =40. Similar o two previous cases,

slightly better performance in the proposed LFC is observed
compared to the existing controller as shown in Fig. 6(b), Fig. 8
and Table IIL

34. Performance evaluation This section quantita-
tively summarizes the performance of the proposed methods based
on the simulation results.

Figure 7(a) and (b) show how the internal model parameters
are identified. It is observed from Fig. 7(a) that initial gain K is
updated as soon as the model idenl@iun process is completed at
t =20, which is a consistent value based on the LSM. Figure 7(b)
shows that the initial time constant is updated very slightly around
1.0. Those values are continuously updated around the converged
values.
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B
20 L] 20 40 L2 B0 100 120
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Fig. 7. Adaptive model identification process. (a) Gain K, (b) time
constant T

Table IIT lists measured values of the overshoot for the step
disturbance, and the standard deviations of frequency oscillations
for all cases, which are given ir%ig‘ 8 in a bar graph. It
is seen from the table and figure that the performance of the
proposed method is equivalent or better than the conventional
MPC controller. This implies that the proposed controller can
successfully identify the target model and handle the power system
disturbances. In the same way, the controller keeps the system
conditions successfully at the set points.

3.5. Computational burden  Simulations are carried out
on PC with Intel Core i7 2.9 GHz CPU and 16GB RAM

TEET Trans 14: 1145-1152 (2019)
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Fig. 8. Overshoot (OS) and standard deviation (STD) of area 1-3
in case II

Table TV. Simulation time (s)

Conventional Proposed
MPC IMC
(Off-line) (On-line)
System Identification — 0.0084
Optimal gain computation 0.4509 0.0051 (updated)

using MATLAB 2016a under Windows 10. CPU times for the
computation of controllers are listed in Table IV. The conventional
method assumes that the system dynamic performance was fixed,
and, therefore, no update process would be required. However, this
is not the case for the present power system situation, in which
the dynamic performance is continuously varying. In this case, the
conventional method also requires model updates. From this point
of view, the proposed method is considerably advantageous.

4. Conclusions

This article proposes a new adaptive LFC method, where
the internal model of MP@Jis adaptively updated on-line using
the Least Square Method. Based on the authors® knowledge, this
controller is recognized as a new type of controller for LFC. The
performance of the controller is fair in handling load disturbances
by using a relatively slow control cycle of actual systems.

mportant feature is that the system identification is carried
out al the control center using the real LFC signal and the real
system response, where the effective constraints are unknown
at the control center. However, the unknown constraints are
embedded in the identified system, which is used in the adaptive
control.

Simulation results show that the internal model melters were
updated on-line to guarantee a high performance ol the proposed
controller. Based on the investigation of the system performance
and the computation time, the proposed control scheme has shown
its superiority compared to the existing MPC controller.

‘We have used a fixed value of 3% of ramp rate limit for
generators. However, in actual systems, the constraints including
ramp rates for LFC vary from minute to minute depending on
various [actors such as the pattern of load change, the number of
generators participating in LFC, their generation dispatch patterns,
and so on, whose exact modeling is difficult. The proposed
approach is a challenge for this problem using the adaptive control
strategy with a real-time system identification. However, we should
mention that a further study is required to deal with the constraints
more accurately.
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Nomenclature

Abbreviations
ACE

AGC

ELD

mcC

LFC

LMI

LSM

MPC

PI(D)

Variable numbers
AB,.C,D F
oy

a

P(k)
Plklk — 1)
Prrc

Q

q .
R e apieni

ne s % N
N
Pi

Vi

A. Appendix

area control error

automatic generation control
economic load dispatch

internal model control

load frequency control

linear matrix inequalities

least square method

model predictive control
proportional—integral (derivative)
controller

state space matrices

Laguerre Toeplitz matrix
Discrete time scaling lactor
Grid frequency of area i

Cost function

Adaptive model gain

MPC gain vector

Laguerre function

Sampling instant

Number of area

Number of sample

Prediction horizon

Measured total demand at k.
Total demand at k predicted at k— 1
LFC signal to plant

‘Weighting matrix

Output variable

Diagonal matrix contains tuning
paramelers

Adaptive model time constant
Control output

State matrix

System output

Toeplitz matrix element=a— 1
Optimal solution vector
Discrete Laguerre network
Mechanical power

The area interface

Al @wer System Model

State space model of a power system including governor, tur-
bine, rotating mass, demand and tie-line power, bias, and frequency
droop characteristics is represented by the following equations.

10
xi(t) = A (t) + Biuwi () + Fiwi (t)

(Al)
)t‘,'(f):C,'.l’,'(f}'f’D,'ll,‘{” (A2)
|i"lr' (F}l = Fmaxi=l..n (A3)

where 1

o (f):SL’l[e va:iables:[;APg,,- AP,,,,,' Af,' &Pﬁe,;]T

1150
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i (t) =conlr(a.riable =APrrc;.
wit)=[APL; Av,]".
) =output variable =ACE;
1e-line power change Py and the area control error (ACE) are
as follows.

2}_[ n n %
APici=— | > Tiafi= )~ Tyl (
Tli=1 i=1
j i j#i
ACE; = APy + BiAf; (A5)
N
Avi = ) Ty (A6)
i=1
J#Fi
The matrices in (Al) are an as follows.
— 0 [ 0
T : RilTei
A IV
A= 0 1) TEp o TEn (AT)
1 n
0 0 22317, 0
i=
j#i
B —[L 00 0]I (A8)
F= | Ty
G=[0 0 g 1] (A9)
D; = [0] (A10)
0 0
0 0
Fi=|_1 0 (A11)
I,
0 -2

where F 18 the maximum ramp rate constraint, pg,,- is the gover-

utput, P,; the mechanical power, Py ; is the load/disturbance,
v; 18 the area interface, Py pc; i8 the control action, y; is the system
output, H; is the equivalent inertia constant, d; is the equivalent
damping coefficient, R; is the speed droop characteristics, and §;
is the frequency bias factor of area i. Ty is the tie-line synchro-
nizing coefficient with area j, T,;, and T'; are the governor and
turbine time constants of area i .La.

A.2 Laguerre Functions

Laguerre functions satisfying the following difference equation
is used in this article.
Lk +1)=A; Lik) (A12)
The initial condition is given by

L{O}r=‘/5|:l —a a*® -a (=N taVot ]

a f;a 0 0
B a 0 0
A=
—ap B a 0
a

a’p
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a is the discrete pole of the Laguerre network and 8 =(1 —a’).
N =35 is used in this article.
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