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ABSTRACT.Marine habitats are in decline worldwide, 
precipitating a strong interest in marine conservation. The 
use of biogeographic data to designate ecoregions has had 
significant impacts on terrestrial conservation efforts. 
However, classification of marine environments into 
ecoregions has only become available in the last several 
years, based on biogeographic data supplemented by 
geomorphology, ocean currents, and water temperatures. 
Here we use a comparative phylogeographic approach 
to test for concordant phylogeographic patterns in three 
closely related species of Tridacna giant clams across the 
Coral Triangle, the most biodiverse marine region in the 
world and one of the most threatened. Data from a 450 
base pair fragment of mitochondrial cytochrome-c oxidase 
subunit one DNA from 1739 giant clams across Indonesia 
and the Philippines show strong concordance between 
phylogeographic patterns in three species of giant clams as 
well as evidence for potentially undescribed species within 
the genus. Phylogeographic patterns correspond broadly 
to marine ecoregions proposed by Spalding et al. (2007), 
indicating that processes contributing to biogeographic 
boundaries likely also limit genetic connectivity across this 
region. These data can assist with designing more effective 
networks of marine protected areas by ensuring that unique 
biogeographic and phylogeographic regions are represented 
in regional conservation planning. 
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Driven by a wide range of stressors, including over-harvesting (Jackson et al. 
2001, Pandolfi et al. 2003), destructive fishing practices (McManus 1997), pollution 
(Williams et al. 2002, McCulloch et al. 2003), disease (Harvell et al. 2002), and cli-
mate change (Wilkinson 2002, Gardner et al. 2003, Hughes et al. 2003), among oth-
ers, many marine habitats are in steep decline worldwide. While these declines have 
precipitated a strong interest in conservation, marine environments are vast and 
relatively difficult for humans to observe, creating a unique challenge in comparison 
to terrestrial conservation efforts. In addition, the majority of marine species have 
a bipartite life history where adults are completely or largely sedentary, but disper-
sal and population connectivity are achieved through small dispersive larvae. These 
features of marine ecosystems make defining the appropriate scale of marine man-
agement units, and developing effective networks of marine reserves, particularly 
challenging (Sale et al. 2005).

To address large-scale challenges in the terrestrial realm, conservation practi-
tioners have turned to “ecoregions,” areas of relatively homogenous species com-
position, clearly distinct from adjacent regions (sensu Spalding et al. 2007). Based 
largely on biogeographic and environmental data, this ecoregion approach has had 
significant impacts on terrestrial conservation efforts (Chape et al. 2003, Hazen and 
Anthamatten 2004, Hoekstra et al. 2005, Burgess et al. 2006, Lamoreux et al. 2006). 
Building on these successes, a hierarchical classification of marine ecoregions has 
been proposed to help facilitate marine conservation planning (Spalding et al. 2007). 
This classification system is largely based on biogeographic data (e.g., species range 
discontinuities, distribution of habitats types) augmented with information on geo-
morphology, ocean currents, and ocean temperature. Noticeably absent in the des-
ignation of ecoregions, however, is information on phylogeography (the geographic 
distribution of genetic diversity) or gene flow, information that can provide valuable 
insights for conservation prioritization (Berger et al. 2014). 

While genetic data are very powerful tools for highlighting boundaries in marine 
environments (Avise 1994, Palumbi 1996, Hedgecock et al. 2007), such data were 
neglected in defining the marine ecoregions of Spalding et al. (2007). However, bio-
geographic and phylogeographic studies are very similar in scope. Both focus on un-
derstanding the geographical distribution of diversity and the processes responsible 
for these patterns. The primary difference is that biogeography focuses on the dis-
tribution of species and communities, while phylogeographic studies are typically 
concerned with the distribution of intraspecific genetic diversity (Avise 2000). Early 
work in phylogeography (Avise 1992, 1994) considered that genetic boundaries in 
widespread species might coincide with biogeographic boundaries, as the same phys-
ical processes that limit species distributions may act as filters to gene flow, creating 
regional genetic structure. However, few studies have followed up on testing this idea 
(but see Burton 1998, Lee and Johnson 2009, Kelly and Palumbi 2010, Toonen et al. 
2011). 
The Coral Triangle, a region comprised of Indonesia, Malaysia, the Philippines, East 

Timor, Papua New Guinea, and the Solomon Islands, supports the highest marine 
biodiversity in the world (Roberts et al. 2002, Carpenter and Springer 2005, Bellwood 
and Meyer 2008); it is also one of the most threatened (Burke et al. 2002, 2011). This 
combination of diversity and threats to diversity have made the Coral Triangle an 
area of intense conservation planning efforts by local governments and international 
non-profit organizations. Consequently, defining the scale of conservation units for 
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marine species in the area has become a topic of active research, largely through 
biogeographic methods (Green and Mous 2004, but see Berger et al. 2014). However, 
there is a large amount of genetic data that can also be brought to bear.

Understanding the evolutionary processes responsible for the Coral Triangle bio-
diversity hotspot has been a subject of intense interest for decades (see Bellwood and 
Meyer 2008, Barber 2009, Barber et al. 2011, Carpenter et al. 2011), precipitating 
a plethora of phylogeographic studies (McMillan and Palumbi 1995, Lavery et al. 
1996, Benzie 1999, Barber et al. 2000, 2006, Crandall et al. 2008, DeBoer et al. 2008, 
Kochzius and Nuryanto 2008, Ackiss et al. 2013, DeBoer et al. 2014, Jackson et al. 
2014). While studies indicate a role of Pleistocene vicariance (e.g., Lavery et al. 1996, 
Duda and Palumbi 1999, Benzie et al. 2002, Vogler et al. 2008), physical oceanog-
raphy (e.g., Barber et al. 2006, 2011), and habitat type (Lourie and Vincent 2004a, 
Williams and Reid 2004, Lourie et al. 2005, Reid et al. 2006) in shaping biodiversity 
in the Coral Triangle, general patterns have yet to be elucidated (Barber 2009). The 
few comparative phylogeographic studies conducted in this region have often found 
discordant patterns of genetic structure between species, which are generally as-
cribed to differences in larval dispersal potential or adult ecology (Lourie et al. 2005, 
Reid et al. 2006, Crandall et al. 2008, but see Barber et al. 2006). The growing number 
of genetic studies in this area on a wide variety of taxa could be extremely valuable 
for defining conservation (Berger et al. 2014). However, variation in sampling strate-
gies and objectives of these studies make it difficult to elucidate generalities from 
these studies. 

Seven of the eight species of giant clams have been assessed under IUCN Red 
List criteria in categories ranging from Least Concern to Vulnerable to Extinction 
(Mollusk Specialist Group 1996a).  Five of the Tridacna species occur in sympatry in 
the Coral Triangle (Lucas 1988). Based on molecular and morphological phylogenetic 
analyses (Maruyama et al. 1998, Schneider and Foighil 1999), the three smallest spe-
cies form a closely-related group with Tridacna crocea Lamarck, 1819 and Tridacna 
squamosa Lamarck, 1819 as sister species and Tridacna maxima (Röding, 1798) sis-
ter to that clade. These species are ecologically very similar. All species inhabit coral 
reefs and occur at relatively shallow depths (Lucas 1988), although T. crocea and T. 
maxima are typically found at more shallow depths than T. squamosa (0–3 vs 2–10 
m; Lucas 1988). All three have similar larval durations of 12 (T. squamosa), 14 (T. 
maxima), and 11 (T. crocea) days from fertilization to settlement (Lucas 1988), and 
all three species establish symbiosis with photosynthetic algae (zooxanthellae) from 
environmental pools shortly after metamorphosis (Fitt and Trench 1981). 

Previous phylogeographic studies on T. crocea (DeBoer et al. 2008, Kochzius and 
Nuryanto 2008, DeBoer et al. 2014) and T. maxima (Nuryanto and Kochzius 2009) 
have revealed strong patterns of phylogeographic structure, indicating limited dis-
persal among regions of the Coral Triangle, particularly among western, central, and 
eastern Indonesian populations. However, lack of concordant sampling precludes the 
use of new powerful tools for comparative spatial analyses (Manni et al. 2004), limit-
ing our ability to test for concordant patterns of regional isolation. 

In the present study, we focus on two objectives. First, we assess phylogeographic 
patterns in mtDNA COI for three sympatric, ecologically similar sister species to 
determine if putative barriers to dispersal are congruent across species. Concordant 
phylogeographic patterns across multiple sympatric sister-species would strongly 
suggest the action of broadly acting physical processes (Schneider et al. 1998, Walker 
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and Avise 1998, Argoblast and Kenagy 2001). Second, we compare the location of 
phylogeographic barriers to dispersal with the boundaries of the marine ecoregions 
defined by Spalding et al. (2007). Concordance between phylogeographic and biogeo-
graphic patterns could indicate that similar and/or complementary processes (e.g., 
currents impact larval dispersal, but temperature variation associated with currents 
shapes adult distributions) act to shape both genetic connectivity and community 
level patterns of biodiversity, further highlighting the utility of genetics in the utility 
of genetics in facilitating marine conservation planning.

METHODS

SAMPLING AND SEQUENCING.—We collected a small piece of mantle tissue from T. 
crocea (n = 796, 39 localities), T. maxima (n = 530, 34 localities), and T. squamosa (n 
= 413, 32 localities) populations across Indonesia and the Philippines and preserved 
them in 95% ethanol (Fig. 1). Clams were identified to species in the field based on 
the morphology of shells and the incurrent and excurrent siphons. However, because 
small individuals can sometimes be difficult to distinguish in the field, we also se-
quenced 16S and beta-tubulin genes for a subset of individuals and assigned final 
species identity based on molecular phylogeny, rather than field identifications (see 
Results). 

We extracted whole genomic DNA using 10% Chelex (Biorad) solution (Walsh et 
al. 1991), then amplified an approximately 450-bp fragment of the mitochondrial 
cytochrome oxidase subunit-I gene (COI) following previously published protocols 
(DeBoer et al. 2008). For T. crocea, amplifications used primers Tridacna 1F and 
Tridacna 3R (DeBoer et al. 2008). For T. maxima, we used Maxima F3 (5΄–GTT TAG 
RGT RAT AAT YCG AAC AG–3΄) and universal primer HCO-2198 (Folmer et al. 
1994). For T. squamosa we used SQUA-F3 (5΄–CAT CGT TTA GAG TAA TAA TTC 
G–3΄) and SQUA-R1 (5΄–ATG TAT AAA CAA AAC AGG ATC–3΄). We sequenced 
forward and reverse directions of double-stranded PCR products with Big Dye 3.1 
(Applied Biosystems, Inc.) terminator chemistry on an ABI 377 or ABI 3730 se-
quencer. Chromatograms were assembled, proofread, and aligned using Sequencher 
(Gene Codes Corp.), and amino acid translation was confirmed using MacClade 4.05 
(Maddison and Maddison 2002).

PHYLOGEOGRAPHIC STRUCTURE.—We investigated the relationship between 
haplotypes and their geographic distributions through several methods. First, we 
constructed minimum spanning trees based on pairwise differences in Arlequin 3.1 
(Excoffier et al. 1992) to examine phylogenetic structure. Then, to investigate geo-
graphical partitioning of this structure in the three giant clam species, we summa-
rized the frequencies of haplotype clusters and plotted these onto a map of the study 
region. 

Regional genetic structure was examined using analysis of molecular variance 
(AMOVA) as implemented in Arlequin with significance tested using 10,000 ran-
domized replicates. AMOVA was run initially with no a priori assumptions. Then, 
populations were grouped into regions to maximize the percent of variation ex-
plained by regions using several strategies. First, populations were grouped fol-
lowing the phylogeographic structure based on the distribution of divergent clades 
within each species. Second, we grouped populations based on marine ecoregion 
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boundaries, as defined by Spalding et al. (2007). Briefly, the hierarchical classifica-
tion system proposed by Spalding et al. (2007) includes three levels of biogeographic 
boundaries: realms, provinces, and ecoregions. Realms are the largest spatial units 
and the entire Coral Triangle region is included in the Central Indo-Pacific realm. 
Provinces are nested within realms and are defined by the presence of distinct biotas 

Figure 1. Map of the study area for (A) Tridacna crocea, (B) Tridacna maxima, and (C) Tridacna 

squamosa with pie diagrams representing the frequencies of each clade in each sampling site 
listed in Table 1. Red lines indicate putative barriers to dispersal identified based on maximiz-
ing FCT in AMOVA analyses for each species (Table 2). Intraspecific clades were defined based 
on arranging haplotypes into minimum spanning trees in (D) T. crocea, (E) T. maxima, and (F) 
T. squamosa. All haplotypes are separated by one mutational step unless denoted by a higher 
number of hash marks. For T. squamosa (F), gray haplotypes are marked according to area of 
collection as follows: southern Indonesia (***), Philippines (**), Fiji and Solomon Islands (*), 
and eastern Indonesia (̂ ). In (D–F), labeled circles indicate sample sizes.
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that have some cohesion over evolutionary time; Spalding et al. (2007) breaks the 
Coral Triangle into the eastern and western Coral Triangle provinces. Finally, ecore-
gions are the smallest units in the classification system and are nested within prov-
inces. There are eight ecoregions in the western Coral Triangle province and four in 
the eastern province; the province and ecoregion of each sampling locality is given 
in Table 1.

To detect potential barriers to dispersal without the a priori assumptions required 
by AMOVA, we used Barrier v2.2 (Manni et al. 2004) to identify common barri-
ers among populations of all three species in the study area. Barrier v2.2 (Manni et 
al. 2004) is an analytical approach based on computational geometry that identifies 
population edges associated with the highest rate of change in a given distance mea-
sure. Pairwise estimates of FST (K2P) were mapped onto a matrix of sampling local-
ity geographic coordinates (latitude and longitude in decimal degrees), their spatial 
organization was modeled by Voronoi tessellation (Voronoi 1908) and a Monmonier 
(Monmonier 1973) maximum-difference algorithm identified borders between 
neighboring sites that exhibited the highest levels of genetic differences and ranked 
them accordingly (Manni et al. 2004). Genetic barriers designate sites with greater 
FST values than would be expected from their geographical proximity. The analyses 
require common sampling localities for each species, so we used only data from the 
23 sites for which we had data from all three species (Table 1). Distance matrices for 
all three species were input into the program and support for each barrier was de-
termined by counting the number of species for which each boundary was included. 

DEMOGRAPHIC ANALYSES.—To compare demographic histories of mtDNA associ-
ated with each species, we calculated Fu’s FS (Fu 1997) using Arlequin to test each 
site for departures from the neutral model due to positive selection, background se-
lection, or population growth. In Fu’s FS test, h is estimated as the observed num-
ber of pairwise differences between the sampled haplotypes, and the FS statistic is 
defined as the log of the probability to observe k or more haplotypes conditional 
on the sampled haplotypes (Schneider et al. 2000). FS tends to be negative if there 
is a significant excess of rare haplotypes, and a significant negative departure of FS 
from 0 is often taken as evidence of recent demographic expansions or population 
bottlenecks in situations where no selective advantage among haplotypes exists (Fu 
1997). Significance of FS values was estimated with the simulated distribution of ran-
dom samples (1000 steps) using a coalescence algorithm assuming neutrality and 
population equilibrium (Hudson 1990). For the FS test, P = 0.02 is considered to be 
significant at the α = 0.05 level (Fu 1997, Schneider et al. 2000). 

PHYLOGENETICS.—Because DNA sequencing resulted in the recovery of two cryp-
tic lineages within the three sampled Tridacna species, additional DNA sequence 
data were obtained for a subset of samples for 16S following the methods of DeBoer 
et al. (2008) to compare with published sequences from Genbank for all known 
Tridacna species. To determine whether mtDNA clades were observed in the nuclear 
genome, we also sequenced beta-tubulin by modifying primers TUB 3.1 and TUB 4.1 
(Duda and Palumbi 2004). Tubulin 41F (5΄–CCT TTT GGA CAG ATT TTC AGA 
CC–3΄) and Tubulin 250R (5΄–TGT TCC CAT ACC AGA TCC AG–3΄) amplified 
approximately 200 bp of the Beta-tubulin gene. Bayesian phylogenetic analysis was 
conducted using Mr. Bayes (Huelsenbeck and Ronquist 2001) using model parame-
ters determined by ModelTest (Posada and Crandall 1998). Bayesian run parameters 
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were NST = 6 with gamma rate variation. The analysis was run for 5 × 10E6 genera-
tions with a sampling frequency of 1000. Posterior probability estimates of node sup-
port were summarized from the resulting 5000 trees with a burn-in of 1250 trees. 
Outgroups from Genbank were included for 16S analyses, but outgroup sequences 
were not available for beta-tubulin.

RESULTS

We obtained mtDNA COI sequence data from 1325 individuals in three Tridacna 
species, yielding a total data set of 1739 individuals (Table 1) when combined with the 
data from DeBoer et al. (2008). All sequences aligned without indels and translated 
without stop codons. Sequence data from 796 T. crocea yielded 301 unique haplo-
types (h = 0.9749, π = 0.0254; Table 1) from 39 sampling localities throughout the 
study area (Fig. 1A–C). For T. maxima, we sequenced 530 individuals and found 193 
unique haplotypes (h = 0.9064, π = 0.0220) at 34 sampling localities. Data from 413 
T. squamosa yielded only 80 haplotypes (h = 0.8235, π = 0.0047) from 32 sampling 
localities. New sequences for T. crocea (KF446283–KF446328) and T. maxima and T. 
squamosa (KF446329–KF446591) are available in Genbank.

Each species contained multiple divergent clades, based on mtDNA COI. For T. 
crocea we identified three clades separated by eight mutational steps each (black, 
white, gray; Fig. 1D). Maximum uncorrected sequence variation within these clades 
was 1.1% in the black and white clades, while variation among these clades ranged 
from a minimum of 3.7% between the black and white clades to a maximum of 7.1% 
between the white and gray clades. We also identified three divergent clades in T. 
maxima with two clades (gray and black) separated by eight mutational steps. A 
third clade (white) was diagnosed by the presence of a common haplotype found in 
61 individuals; the white clade was separated from the black by three steps (Fig. 1E). 
Maximum uncorrected sequence variation within these clades was 1.4% in the gray 
clade while variation among these clades ranged from a minimum of 2.1% between 
clades A and B to a maximum of 9.1% between the gray and white clades. Genetic 
diversity in T. squamosa grouped into two star-like clusters separated by only one 
step (Fig. 1F). Both central haplotypes (black) occur throughout the study area (data 
not shown). A second gray clade is separated from the black clade by three steps (Fig. 
1F). Some gray clade haplotypes wewre highly divergent, separated by as many as 
five steps, but these were represented by a single color due to their low frequency. 
Maximum variation within these clusters was 2.5% and minimum variation between 
them was 0.2%. Two cryptic divergent lineages did not form a monophyletic group 
with any of the three focal taxa (below). Maximum variation within these two lin-
eages ranged from 0.9% to 3.0%, but minimum variation between these clades and 
other Tridacna species was 9.2%. As such, despite being field identified as one of the 
three focal taxa, these samples were excluded from further population analyses.

In all three species, clades were distributed in an east to west pattern across the 
study area. For T. crocea, the white clade was restricted to the Indian Ocean; the gray 
clade was restricted to eastern Indonesia (Fig. 1A); the largest clade, black, occurred 
throughout central Indonesia, confirming previous results (DeBoer et al. 2008) and 
also extended into the Philippines (Fig. 1A). For T. maxima the white clade occurred 
in Indian Ocean populations, but also infrequently in southern Indonesia and Raja 
Ampat (Fig. 1B). The gray clade was largely restricted to eastern Indonesia, but was 
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4Table 1. Summary statistics and neutrality test results for each site shown in Figure 1. Province (Prov.) and ecoregion (E.R.) numbers refer to regions identified in Spalding et al. (2007). Map 
numbers refer to localities numbered on Figures 1A, 1B, and 1C. Haplotype diversity (h), nucleotide diversity (π), and Fu’s FS (Fu 1997) calculated in Arlequin 3.1 (Excoffier et al. 2005). Bold 
values are significant at P < 0.02, which is equivalent to an alpha value of 0.05 for Fu’s FS. For Tridacna crocea, all sequence data were previously published (DeBoer et al. 2008, 2013) except 
for n indicated in parentheses with unique haplotypes in Genbank as KF446283–KF446328. All Tridacna maxima and Tridacna squamosa COI sequences are published for the first time here 
(KF446329–KF446591).

T. crocea T. maxima T. squamosa

Prov. E.R. Map Locality n π h FS Map Locality n π h FS Map Locality n π h FS

24 111 1 Aceh 31 0.0110 0.95 −5.50 1 Aceh 16 0.0039 0.89 — —
— — — — — — — −2.38 2 Cubadak 17 0.0037 0.83 −4.99  
27 119 3 Krakatau 4 (2) 0.0084 1.00 −0.95 3 Krakatau 7 0.0194 1.00 −1.99 1 Krakatau 30 0.0045 0.88 −7.01
27 119 4 Alam Kotok 15 (2) 0.0116 0.80 0.77 4 Alam Kotok 4 0.0195 0.83 2.35  
27 119 5 Belat 30 (5) 0.0116 0.82 1.20 5 Belat 22 0.0134 0.84 −1.77 2 Belat 10 0.0055 0.53 0.99
27 119 6 Karang Congkak 26 0.0101 0.82 −2.01 6 Karang Congkak 25 0.0158 0.97 −7.76 3 Pulau Seribu 21 0.0019 0.48 −0.36
27 119 7 Pramuka/Semak 

Duan
7 (2) 0.0062 0.95 −2.71 7 Semak Duan 27 0.0094 0.80 −4.06  

27 119 8 Pramuka 27 0.0136 0.80 −1.39  
26 117 8 Karimunjawa 21 0.0091 0.77 −0.66 9 Karimunjawa 8 0.0140 0.93 −0.07 4 Karimunjawa 6 0.0046 0.60 1.02
30 119 10 Nusa Penida 11 0.0036 0.78 −0.94 6 Nusa Penida 14 0.0040 0.91 −5.51
30 117 9 Bali 19 (6) 0.0135 0.96 −4.64 11 Bali 21 0.0106 0.95 −10.24 5 Bali 18 0.0062 0.96 −6.65
30 132 10 Lombok 7 (5) 0.0211 0.95 −0.26 12 Lombok 11 0.0045 0.93 −4.55 7 Lombok 6 0.0028 0.80 −1.45
30 132 11 Flores 20 (1) 0.0109 0.92 −6.93 13 Flores/Komodo 5 0.0240 1.00 −1.63 9 Flores 5 0.0046 0.90 −1.01
30 128 12 Makassar 36 0.0091 0.95 −9.87 16 Makassar 13 0.0087 0.91 −2.67 10 Makassar 10 0.0022 0.64 0.39
30 132 14 Sebayur 10 0.0067 0.67 0.25 8 Sebayur 9 0.0075 0.92 −2.30
30 131 13 Selayar 35 0.0076 0.82 −12.26 15 Selayar 13 0.0116 0.87 −1.75 11 Selayar 8 0.0016 0.46 −0.44
30 128 24 Bunaken 21 0.0045 0.74 −6.35  
30 128 14 Manado 18 0.0085 0.91 −2.33 25 Manado/Lembeh 22 0.0047 0.70 −2.95 12 Manado 15 0.0047 0.75 0.25
30 128  13 Lembeh 15 0.0059 0.95 −6.59
30 128  14 Bangka Batu 11 0.0027 0.73 −3.10
30 128 15 Sangihe 14 (3) 0.0102 0.99 −8.45 26 Sangihe 10 0.0021 0.38 0.30 15 Sangihe 14 0.0027 0.77 −2.52
30 126 16 Ulugan Bay 25 0.0107 0.91 −1.92  16 Ulugan Bay 8 0.0064 0.86 −0.44
30 126 17 Honda Bay 30 0.0103 0.97 −14.84 17 Honda Bay 9 0.0026 0.58 −0.82 17 Honda Bay 22 0.0025 0.73 −0.82
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Table 1. Continued.

T. crocea T. maxima T. squamosa

Prov. E.R. Map Locality n π h FS Map Locality n π h FS Map Locality n π h FS

30 126 18 Tawi−Tawi 25 0.0105 0.92 −2.00 18 Tawi−Tawi 18 0.0049 0.90 −8.22 18 Tawi−Tawi 3 0.0015 0.67 0.20
30 127 19 Romblon 34 0.0094 0.92 −10.21 19 Romblon 29 0.0136 0.86 −4.57 19 Romblon 6 0.0136 0.73 3.39
30 127 20 Siquijor 8 (2) 0.0065 0.79 −0.52 20 Siquijor 19 0.0038 0.67 −3.28 20 Siquijor 6 0.0012 0.53 0.63
30 127 21 Camiguin 12 (7) 0.0111 1.00 −10.22 21 Camiguin 10 0.0384 0.98 −0.68 21 Camiguin 19 0.0007 0.46 −2.77
30 127 22 Perez 31 0.0096 0.95 −12.94 22 Perez 16 0.0019 0.67 −1.98 22 Perez 21 0.0098 0.77 −0.42
30 127 23 Sorsogon 12 (1) 0.0034 0.44 1.55 23 Sorsogon 30 0.0077 0.84 −7.27 23 Sorsogon 16 0.0015 0.52 −1.21
30 127 24 Dinigat 25 0.0084 0.87 −6.99   
30 129 25 Western 

Halmahera
12 0.0086 0.97 −4.80 29 Halmahera 15 0.0034 0.83 −4.25 24 Halmahera 19 0.0040 0.91 −4.13

30 129 26 Pulau Doi 6 0.0224 1.00 −1.00 28 Pulau Doi 11 0.0169 0.91 −0.50  
30 129 30 T. Jerawai 15 0.0397 0.97 −0.40  
30 129 27 Kolorai 15 0.0296 0.98 −2.68 27 Mayu Island 18 0.0094 0.64 −0.59  
30 130 28 Wayag 20 0.0136 0.97 −10.39 31 Dampier Straight 11 0.0281 0.89 0.74 26 Dampier Straight 11 0.0046 0.93 −4.48
30 130 29 Kri 25 0.0105 0.95 −10.78   
30 130 30 Jefman Island 20 0.0237 0.97 −4.23 32 Misool 8 0.0100 0.86 0.50 25 Misool 18 0.0056 0.84 −2.86
30 130 31 Misool 20 0.0097 0.96 −4.69   
30 130 32 Fak Fak 20 0.0089 0.94 −9.55  27 Fak Fak 9 0.0082 0.83 −0.77
30 130 33 Kaimana 18 0.0048 0.89 −7.48  28 Kaimana 23 0.0027 0.78 −2.65
30 130 34 Tridacna Atoll 22 (6) 0.0042 0.78 −4.64  29 Teluk 

Cenderawasih
17 0.0020 0.68 −1.70

30 130 35 Pulau Kumbur 22 0.0096 0.90 −4.08   
30 130 36 Nambire 22 0.0071 0.91 −2.29  30 Nambire 7 0.0022 0.76 −0.06
30 130 37 Biak 28 (7) 0.0269 0.94 −3.51 33 Biak 20 0.0329 0.96 −2.35 31 Biak 9 0.0089 0.97 −3.47
30 130 38 Yapen-Serui 14 0.0252 0.93 −1.15 34 Yapen 11 0.0232 0.89 −0.37 32 Yapen 7 0.0053 0.71 0.13
30 130 39 Yapen-Ambai 15 0.0103 0.93 −2.51   
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also found in Krakatau and Selayar. The largest clade, black, occurred throughout 
central and eastern Indonesia and north into the Philippines (Fig. 1B). For T. squa-
mosa, the gray clade haplotypes occurred in low frequency throughout the study 
area (Fig. 1C). Some geographic trends were apparent in the gray clade (Fig. 1F) with 
closely related haplotypes clustering in southern Indonesia, the Philippines, Fiji and 
the Solomon Islands (n = 5, data not used in analyses), and eastern Indonesia (see Fig. 
1C legend).

SPATIAL STRUCTURE OF GENETIC VARIATION.—Using AMOVA to partition ge-
netic variation into regions, we found evidence of strong genetic structure in all spe-
cies (Table 2). Assuming no a priori structure in T. crocea, FST = 0.5625 (P < 0.0001). 
There was significant structure between Indian Ocean, central, and eastern regions 
in the study area (FCT = 0.4306, P < 0.001). The level of structure was maximized 
when populations in the Bay of Cenderawasih were split into a fourth group (FCT 
= 0.60145, P < 0.001). Grouping populations according to marine provinces (FCT = 
0.36192, P < 0.001) and marine ecoregions (FCT = 0.2736, P < 0.001) also accounted 
for strong genetic structure.

Genetic structure in T. maxima was also strong, and similar to partitions de-
scribed for T. crocea. Assuming no a priori structure, FST = 0.4890 (P < 0.0001). The 
level of genetic structure between groups was maximized with five groups: (1) Indian 
Ocean, (2) Pulau Seribu and Java, (3) central, (4) eastern, and (5) Bay of Cenderawasih 
(FCT = 0.5521, P < 0.001; Fig. 1B). Grouping populations of T. maxima according to 
marine provinces (FCT = 0.3104, P < 0.001) and marine ecoregions. (FCT = 0.3325, P < 
0.001) also explained regional genetic structure.

We were unable to locate any T. squamosa in the Indian Ocean localities we vis-
ited. The distribution of clades in this species differs somewhat from the strong west-
central-east pattern seen in T. crocea and T. maxima (Fig. 1). Assuming no a priori 
structure, FST = 0.1031 (P < 0.0001). Populations of T. squamosa showed evidence of 
reduced overall genetic structure, relative to its sister species (FST = 0.1031 vs FST = 
0.5625 and FST = 0.2523 in T. crocea and T. maxima, respectively). However, genetic 
structure was partitioned in a geographic pattern consistent with the other two spe-
cies with maximal between-group variation achieved when central, eastern, and Bay 
of Cenderawasih populations were grouped (FCT = 0.0826, P < 0.001). Organizing 
groups based on marine provinces (FCT = −0.0108, P > 0.05) or marine ecoregions 
(FCT = 0.0252, P = 0.065) does not result in significant structure between groups.

Barrier v2.2 identified 10 barriers among populations of all three species in the 
study area (Fig. 2), although Indian Ocean populations had to be excluded from 
this analysis because we did not have data for T. squamosa from this area. The 10 
strongly-supported barriers (3/3 species) are labeled with Roman numerals in Figure 
2. Weaker barriers, supported by only one of the species, are represented by thin lines 
in the figure. Strong barriers were identified isolating Krakatau from the rest of Pulau 
Seribu (Barrier I), between Bali and Lombok (Barrier II), between populations north 
and south of the Java Sea (Barriers III and IV), isolating the island of Halmahera 
(Barrier V), isolating the Bay of Cenderawasih (Barrier VI), between far western 
Philippine populations and those in northern Sulawesi (Barrier VII), between far 
western Philippine populations and the rest of the country (Barrier X), and between 
northern and southern Philippine populations (Barriers IX and VIII). 
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Table 2. AMOVA results showing variance components (Var), percent variation (%Var), and F-statistics for various putative barriers to gene flow. We also 
show results for groupings based on marine provinces and marine ecoregions, as defined by Spalding et al. (2007). Groups maximizing FCT for each species are 
highlighted in bold and are shown in Figure 1. All FST P < 0.001. For FCT, P-values are as follows: P < 0.001 (***), P < 0.005 (**), P < 0.05 (*), P > 0.05 (NS).

Among groups
Among populations 

within groups Within populations FCT 
P-valueVar %Var Var %Var Var %Var FST FCT

Tridacna crocea

No barriers 3.28 56.25 2.55 43.75 0.5625
Sumatra vs Central vs Eastern 2.97 43.06 1.43 20.78 2.50 36.21 0.6379 0.4306 ***
Sumatra vs Central vs Eastern vs TC 4.35 60.14 0.38 5.30 2.50 34.55 0.6545 0.6015 ***
Provinces 2.44 34.57 2.13 30.07 2.50 35.36 0.6464 0.3457 **
Ecoregions 1.59 27.36 1.72 29.62 2.50 43.02 0.5698 0.2736 **

 Ecoregions + Bay 3.01 51.34 0.35 6.00 2.50 42.66 0.5734 0.5134 ***
Tridacna maxima

No barriers 2.48 48.90 2.59 51.10 0.4890
Sumatra vs Central vs Eastern 1.43 25.23 1.74 30.78 2.49 43.99 0.5601 0.2523 **
Sumatra vs Central vs Eastern vs TC 2.74 43.11 1.13 17.71 2.49 39.18 0.6082 0.4311 ***
Sumatra vs P Seribu and Java vs Central vs Eastern vs TC 3.24 55.21 0.13 2.30 2.49 42.50 0.5751 0.5521 ***
Provinces 1.77 31.04 1.45 25.34 2.49 43.63 0.5637 0.3104 ***
Ecoregions 1.67 33.25 0.87 17.22 2.49 49.53 0.5047 0.3325 ***

 Ecoregions + Bay 2.16 42.27 0.46 8.89 2.49 48.75 0.5125 0.4227 ***
Tridacna squamosa

No barriers 0.11 10.31 0.94 89.69 0.1031
Central vs Eastern 0.06 5.86 0.08 7.44 0.93 86.70 0.1330 0.0586 ***
Central vs Eastern vs TC 0.09 8.26 0.06 5.98 0.93 85.76 0.1424 0.0826 ***
Provinces 0.00 −0.16 0.11 10.37 0.93 89.79 0.1021 −0.0016 NS
Ecoregions 0.03 2.52 0.08 8.04 0.93 89.35 0.1057 0.0252 NS

 Ecoregions + Bay 0.06 5.37 0.06 5.43 0.93 89.20 0.1080 0.0537 **
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Strongly supported boundaries from Barrier are largely consistent with marine 
ecoregion boundaries across the study area (Fig. 3A). Concordance between phy-
logenetic barriers identified by Barrier and ecoregion boundaries is summarized in 
Table 3. Six of the 10 barriers align directly with specific ecoregion boundaries. An 
additional barrier (Barrier I) was in close proximity to an ecoregion boundary. The 
final three barriers (Barriers VI, IX, and X) were located within large ecoregions 
without internal divisions based on the biogeographic classification. While Spalding 
et al. (2007) lump the geographically distinct regions of the Bay of Cenderawasih 
and Raja Ampat into the “Papua” ecoregion, Barrier VI shows that these regions are 
genetically isolated. Similarly, while the majority of the Philippines were included in 
the “Eastern Philippines” ecoregion, Barrier VIII separates northern and southern 
Philippine populations at a location consistent with the location of the bifurcation 
of the Northern Equatorial Current. Lastly, Barrier IX isolates a northern Philippine 
population, another genetic subdivision within the “Eastern Philippines” ecoregion. 

DEMOGRAPHIC ANALYSES.—As an additional test of whether these species have 
similar evolutionary histories that would support the finding of concordant phylo-
geographic patterns, we calculated Fu’s FS to determine if there was any evidence of 
a shared demographic history. Fu’s FS was significantly negative (P < 0.02), indicating 
population expansion, in less than half of localities for all species (Table 1). Patterns 
seen in each species were unique. In T. crocea, the majority of populations in central 
Indonesia showed evidence of expansion. Populations in eastern Indonesia (including 

Figure 2. Marine ecoregions, with numeric labels, as defined by Spalding et al. (2007). Red 
lines (online version) marked by Roman numerals are major genetic boundaries as identified in 
Barrier v2.2 based on data from all three species at 23 common collection sites. Line thickness 
corresponds to the number of species that support the barrier (thick lines are supported by 3/3 
species, thinner lines are supported by 2/3 species). The thin dotted line represents the common 
barrier between Indian Ocean populations and the rest of the study area identified in Tridacna 

crocea and Tridacna squamosa, which could not be investigated using Barrier because there are 
no samples from T. squamosa in this area. 
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Figure 3. Bayesian phylogenetic trees of Tridacna maxima, Tridacna crocea, and Tridacna 

squamosa unique haplotypes of (A) mtDNA cytochrome oxidase c subunit I (COI), (B) mtDNA 
16S, and (C) nuclear beta-tubulin sequences with outgroups from GenBank where available for 
Tridacna coastata Roa-Quiaoit, Kochzius, Jantzen, Zibdah, Richter, 2008; Tridacna derasa 
(Röding, 1798); Tridacna gigas (Linnaeus, 1758); Tridacna tevoroa Lucas, Ledua and Braley, 
1990; Hippopus hippopus (Linnaeus, 1758); Hippopus porcellanus Rosewater, 1982; and Conus 

patricius Hinds, 1843. Posterior probabilities for each node are given above branches.
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most of the Bay of Cenderawasih) and western Indonesia (including Sumatra) do not 
show evidence of expansion. Populations in the Philippines were split, with approxi-
mately half showing evidence of expansion. In T. maxima populations, western and 
southern Indonesian localities showed evidence of expansion. In contrast, none of 
the eastern Indonesian populations showed evidence of expansion. As in T. crocea, 
Philippine populations of T. maxima gave mixed results for population expansion. 
In T. squamosa, many of the central and southern Indonesian populations showed 
evidence of expansion. However, the majority of Philippine populations did not. 

PHYLOGENETIC ANALYSIS.—A total of 450 bp of CO1, 500 bp of 16S, and 390 bp 
of beta tubulin sequence data was analyzed from a subset of samples, representing 
15 T. crocea, 16 T. maxima and 20 samples that were morphologically identified as 
T. squamosa in the field. Bayesian analyses recovered well-resolved trees, showing 
three distinct clades for T. crocea, T. maxima, and T. squamosa. However, the CO1 
and 16S data also recovered two independent lineages within samples identified as 
T. squamosa in the field, although the phylogenetic placement of these two distinct 
clades was not well defined (Fig. 3A,B). Genetic variation was minimal in beta-tubu-
lin and consequently the cryptic lineages were not recovered, nor were three distinct 
clades for the three focal taxa (Fig. 3C).

DISCUSSION

Genetic data from three species of giant clams (genus Tridacna) show strong pat-
terns of phylogeographic structure across the Coral Triangle; each species consists 
of multiple highly divergent clades and this genetic variation is distributed non-
randomly across the study area from west to east. Significant regional partitions 
common in all three species are (1) central Indonesia and the Philippines, (2) east-
ern Indonesia, and (3) Cenderawasih Bay, confirming previous work on T. crocea 
(DeBoer et al. 2008, 2014, Kochzius and Nuryanto 2008), T. maxima (Nuryanto and 
Kochzius 2009), and many other marine species from the Coral Triangle (reviewed 
in Barber et al. 2011, Carpenter et al. 2011). In addition, Indian Ocean populations 
form a distinct region in T. crocea and T. maxima, the two species for which we have 
data. Concordant phylogeographic patterns across multiple codistributed species 
strongly suggests that the patterns arose from the action of a shared physical process 
(Schneider et al. 1998, Walker and Avise 1998, Argoblast and Kenagy 2001) and these 
boundaries have strong similarities to the marine ecoregions proposed by Spalding 

Table 3. Concordance between phylogenetic divisions identified by Barrier v2.2 and marine ecoregions 
designated by Spalding et al. (2007). Barrier and ecoregion labels and coincide with Figure 1. 

Barrier Location
Coincident with 

ecoregion boundary? Ecoregions
I Bali vs Lombok Yes 119 vs 132, 117 vs 128
II Java Sea: north vs south Yes 131 vs 132
III Halmahera Yes 128 vs 129, 129 vs 131
IV Philippines vs Indonesia Yes 128 vs 127
V Far western Philippines vs Philippines Yes 126 vs 127
VI Bay of Cenderawasih No Divides 130
VII Philippines: north vs south No Divides 127
VIII Philippines: north vs south No Divides 127
IX Krakatau vs Pula Seribu Close Divides 119, but near 117 vs 119
X Java Sea: north vs south Yes 128 vs 132
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et al. (2007) indicating that processes shaping genetic structure may also be influenc-
ing biogeographic patterns.

GENETIC STRUCTURE OF TRIDACNA SPECIES ACROSS THE CORAL TRIANGLE.—
The strongest patterns of regional structure were seen in T. crocea (FCT = 0.6015, 
P < 0.001; Table 2) and T. maxima (FCT = 0.5521, P < 0.001; Table 2), both of which 
contain three highly divergent mtDNA COI clades (Fig. 1D,E) and show strong re-
gional divergence among populations in (1) western Sumatra, (2) central Indonesia 
and the Philippines, (3) eastern Indonesia, and (4) Cenderawasih Bay. In contrast, 
T. squamosa only contains two minimally distinct haplogroups, rather than three. 
However, this is likely a sampling artifact. The third clade in T. crocea and T. maxima 
is restricted to western Sumatra, but no T. squamosa could be found in these regions. 
Given that T. squamosa is known from the Indian Ocean (Lucas 1988) further sam-
pling may uncover a third Indian Ocean clade. Although levels of structure were 
lower in T. squamosa, patterns were still very similar to T. crocea and T. maxima, 
with regional subdivisions in (1) central Indonesia and the Philippines, (2) eastern 
Indonesia, and (3) Cenderawasih Bay (FCT = 0.0826, P < 0.005; Table 2). 

Divergence between Indian and Pacific ocean populations likely results from al-
lopatry during Pleistocene low sea level stands, as suggested for other species (e.g., 
Lavery et al. 1996, Duda and Palumbi 1999, Barber et al. 2000, Benzie et al. 2002, 
Vogler et al. 2008), including T. crocea (DeBoer et al. 2008). During this time, the 
Sunda and Sahul shelves were exposed, resulting in constricted water flow between 
the Pacific and Indian oceans (Voris 2000). As sea levels rose, populations recolo-
nized the shelves leaving genetic signals of population range expansion (Crandall 
et al. 2011). Not only do phylogeographic breaks in Tridacna demonstrate isolation 
across the Sunda Shelf, but results of Fu’s FS neutrality tests provide evidence of range 
expansion in many populations, particularly in the western parts of Indonesia near 
the Sunda Shelf (Table 1). Changes in population size could be explained by the re-
duction of habitat during sea level low stands and recolonization of new habitats after 
sea levels rose. This hypothesized impact of the Quaternary ice ages has been impli-
cated in the genetic population structure of numerous Coral Triangle species (e.g., 
Barber et al. 2000, 2002, Fauvelot et al. 2003, Lourie and Vincent 2004a, Crandall 
et al. 2008). Given the concordant genetic patterns we found, this mechanism may 
be common to other tridacnid species in the area. However, future studies should 
be able to differentiate statistically between “single-event” and “multiple-event” bio-
geographic hypotheses by evaluating genetic divergence across a large number of 
independent loci in each species (Edwards and Beerli 2000). 

Divergence between populations from West Papua and those from the Philippines 
and Central Indonesia is likely the result of physical oceanographic processes such 
as the Halmahera Eddy (Barber et al. 2006, 2011) that strongly limits water transport 
in the area (Nof 1995, Morey et al. 1999). Patterns in all three species mirror results 
from larval dispersal simulations in the Coral Triangle (Kool et al. 2011), suggesting 
that contemporary oceanography contributes to the observed regional divergences 
or may reinforce historical barriers. However, regional differences in the distribution 
of symbiotic Symbiodidium clades in Tridacna from Indonesia (DeBoer et al. 2012) 
suggest that environmental variables could also contribute to the observed patterns.
The phylogeographic patterns above were confirmed by analyses in Barrier, a 

method that does not require a priori assumptions for regional partitions. Using data 
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on genetic and geographic distance, Barrier identified 10 partitions within the study 
area where gene flow is limited. Although concordance among species appears some-
what limited using traditional phylogeographic approaches (Fig. 1), the high percent-
age of barriers common in all three species (thick lines in Fig. 2) demonstrates that 
structure in all three species is highly similar. This result emphasizes the importance 
of using comparative phylogeographic analyses to identify broad patterns.

CORRESPONDENCE BETWEEN PHYLOGEOGRAPHIC AND BIOGEOGRAPHIC 
PATTERNS IN THE CORAL TRIANGLE.—Spalding et al. (2007) defined marine ecore-
gions using a global hierarchical classification system of coastal and shelf marine 
regions, which was based on a broad array of source information including species 
range discontinuities, dominant habitats, geomorphologic features, currents, and 
temperatures, but not intraspecific genetic diversity. Despite the fact that genetic 
data were not used to define marine ecoregions, the phylogenetic patterns identi-
fied in this study are strikingly similar to biogeographic patterns represented by the 
boundaries of marine ecoregions (Spalding et al. 2007, Fig. 2). Ecoregion boundaries 
explained 27% and 32% of the genetic variation present in T. crocea and T. maxima, 
respectively (although only 3% for T. squamosa) and genetic barriers common to all 
3 species were found at most ecoregion boundaries (Fig. 2). Specifically, genetic data 
support the ecoregion divisions between Bali and Lombok (Barrier II); areas in the 
Java Sea and those south of the islands (Barriers III and IV); western Halmahera (V); 
far eastern Philippine waters (Barrier X); and the separation between the Philippines 
and Indonesia (Barrier VII). Genetic data from T. crocea and T. maxima also sup-
port the ecoregion division between western Sumatra and the rest of the study area 
(dashed line in Fig. 2), which would presumably have been identified by Barrier if we 
had data from T. squamosa for that area. 
This strong concordance of biogeographic and phylogeographic data indicates that 

similar processes may shape both genetic connectivity and community level patterns 
of biodiversity, as suggested by Avise (1992, 1994). Although it cannot be ruled out 
that different processes acting on larval dispersal and adult survival could result in 
the concordant biogeographic and phylogeographic patterns, the recovery of similar 
phylogeographic patterns across benthic (e.g., Timm and Kochzius 2008), midwater 
(e.g., Ackiss et al. 2013), and pelagic fishes (e.g., Jackson et al. 2014), as well as benthic 
marine invertebrates (see Barber et al. 2011 and Carpenter et al. 2011 for reviews) 
argues for a single process as it would be improbable that different processes would 
act so similarly across such taxonomic and ecological diversity. Regardless of the 
specific process(es) involved, the recovery of strong phylogeographic structure indi-
cates an absence of connectivity among geographic regions (Hedgecock et al. 2007), 
providing additional genetic support for the independence of the ecoregions defined 
by Spalding et al. (2007).
The strong agreement between biogeographic and genetic methods for defining 

ecoregions is heartening given the difficulty and costs of conducting genetic studies 
in the Coral Triangle and the need to include a broad diversity of taxa in conserva-
tion planning. However, it is important to note the areas of discord where genetic 
data identified breaks within a single ecoregion. First, the Bay of Cenderawasih in 
eastern Indonesia is identified as a genetically unique area for all three Tridacna spe-
cies (Fig. 2, Barrier VI) and their Symbiodidium symbionts (DeBoer et al. 2012), as 
well as numerous other Coral Triangle species (e.g., Barber et al. 2006, 2011, Crandall 
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et al. 2008), a result that highlights the genetic and demographic independence of 
this region. Thus, this area may warrant reclassification as a unique area within the 
ecoregion, if not as a separate ecoregion itself. A second location where we iden-
tified a genetic break, but no ecoregion boundary, is within the Philippine islands 
(Barriers IX and X). Our results and others (Malay et al. 2002, Juinio-Menez et al. 
2003, Magsino 2004, Magsino and Juinio-Menez 2008, Ravago-Gotanco et al. 2007) 
provide evidence of limits to genetic connectivity within the Philippines, suggesting 
this area may warrant further division into multiple ecoregions to manage divergent 
areas as well.

POTENTIALLY UNDISCOVERED TAXA.—Giant clams of the genus Tridacna are a 
conspicuous and well-known taxon from Indo-Pacific coral reefs. The majority (five 
of eight) of Tridacna clams were described nearly 200 yrs ago in the 18th and 19th cen-
turies, although the most recent species description was T. costata in 2008 (Richter et 
al. 2008), a species restricted to the Red Sea, a peripheral area on the very edge of the 
Indo-Pacific region. It is therefore surprising that our phylogenetic analysis revealed 
the presence of two highly differentiated lineages that do not fall clearly within one 
of the described species known from the Coral Triangle. Although results from the 
nuclear beta tubulin gene were inconclusive, COI and 16S sequence data strongly 
indicate that these lineages are evolutionarily independent (Fig. 3). Maximum varia-
tion within these two lineages ranged from 0.9% to 3.0% while being a minimum of 
9.2% divergent from the most closely related taxa, a level (Hebert et al. 2003) that 
suggests these are likely new Tridacna species. While DeBoer et al. (2014) found a 
lack of concordance between nuclear and mitochondrial partitions in T. crocea, the 
depth of divergence of these two cryptic clades is substantially higher. Similarly, even 
within clades of T. maxima, levels of variation between clades reached 9.1%, sug-
gesting the possibility of cryptic taxa within this species as well. Unfortunately, the 
non-destructive sampling techniques employed in our study included leaving clams 
intact on the reef, thereby precluding further morphological analysis, but the major-
ity of samples with these divergent lineages were sampled on the islands of Krakatau, 
suggesting the need to conduct further work in this region.

CONSERVATION IMPLICATIONS.—Understanding the evolutionary history of a 
species can help inform conservation planning efforts in many ways, including 
through the identification of cryptic biodiversity, genetically unique populations, 
and demographically separate regions, among others (reviewed in Feral 2002), and 
can be directly incorporated into conservation prioritization algorithms (Beger et 
al. 2014). Genetic analyses of three nominal species of Tridacna identified multiple, 
distinct clades that likely represent unique evolutionarily significant units (ESUs, 
Moritz 1994) that are restricted to different regions of the Coral Triangle. Results 
also uncovered potentially undescribed species. Populations of Tridacna across the 
Coral Triangle are either functionally extinct or in sharp decline due to overharvest 
(for food or sale into aquarium trade) and/or environmental stressors (Othman et 
al. 2010). Although all Tridacna are internationally protected by the Convention on 
International Trade in Endangered Species (CITES) and appear on the IUCN Red 
List of Threatened Species (Mollusk Specialist Group 1996b), the presence of mul-
tiple, highly divergent lineages in each species means that individually each lineage 
is more endangered than previously believed. 
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Extensive information on a single taxonomic group is valuable to conservation 
efforts, but our finding of concordance between phylogeography and marine ecore-
gions provides evidence to validate the general model of dividing the ocean into mul-
tiple management units. While we did not sample all of the 12 ecoregions in the 
Coral Triangle, those that we did sample aligned closely with breaks in the genetic 
data. This result suggests that such an approach is generally applicable across taxa. 
The ability to generalize across multiple species is important because, while genetic 
data are very powerful for highlighting boundaries in marine environments (Avise 
1994, Palumbi 1996, Hedgecock et al. 2007), such data are still relatively uncommon 
in marine species throughout the entirety of the world’s oceans. Our finding that the 
limits to genetic connectivity are concordant with transitions from one ecoregion 
to another suggests that the ecoregion classification system may be a powerful tool 
for identifying common patterns shaping biodiversity and regional limits to connec-
tivity in the Coral Triangle. For conservation areas to be “representative” requires 
protection on a full range of biodiversity at multiple levels including genes, species, 
communities, evolutionary patterns, and ecological processes that create and sus-
tain biodiversity (reviewed in Spalding et al. 2007). Biogeographic classifications, 
therefore, provide a crucial foundation for the assessment of this representativeness 
(Olson and Dinerstein 2002, Lourie and Vincent 2004b); concordance of genetic data 
with this biogeographic classification ensures that an additional, critical level of bio-
diversity will also be protected.
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